News and Articles

การป้องกันพิษที่เกิดจากสารทำความเย็น (Refrigerant Safety, from Chillmatch Co., Ltd.)

การป้องกันพิษที่เกิดจากสารทำความเย็น (Refrigerant Safety, from Chillmatch Co., Ltd.)


หมวดหมู่: มาตรฐานอาหาร [คุณภาพและ มาตรฐานอาหาร]
วันที่: 18 ธันวาคม พ.ศ. 2553

สารทำความเย็น R-12, R-22 และ R-502 เป็นสารไม่มีพิษ ดังนั้นจึงไม่ต้องสวมหน้ากากก๊าซ แต่จะต้องระวังไว้อย่างหนึ่ง คือ ต้องสวมอุปกรณ์ที่ป้องกันตาเอาไว้ เนื่องจาก สารทำความเย็นเหล่านี้จะทำให้ความชื้นภายในตานั้นแข็งตัวได้ และเมื่อ R-12, R-22 และ R-502 สัมผัสถูกตา ห้ามถูหรือขยี้ตาเด็ดขาด จะต้องนำส่ง รพ. และปฐมพยาบาลเบื้องต้น ดังนี้1. ให้หยดน้ำมันแร่ที่ปราศจากเชื้อให้ทั่วดวงตา 2. ล้างตาด้วยสารละลายกรดบอริกเจือจาง หรือสารละลายน้ำเกลือที่มีความเข้มข้นไม่เกิน 2 เปอร์เซ็นต์ เมื่อสารทำความเย็น สัมผัสถูกผิวหนังให้ชำระล้างบริเวณนั้นด้วยน้ำหลายๆ ครั้ง และถอดเสื้อผ้าออก ล้างผิวหนังบริเวณนั้นด้วยน้ำและนำส่งโรงพยาบาล (ดูรายละเอียดเพิ่มเติมที่ pdf file)



ข่าวและบทความที่เกี่ยวข้อง
มทร. ธัญบุรี คิดค้นเครื่องคัดขนาดกลีบกระเทียม ช่วยสถานประกอบการประหยัดเวลา และเพิ่มผลผลิต
มทร. ธัญบุรี คิดค้นเครื่องคัดขนาดกลีบกระเทียม ช่วยสถานประกอบการประหยัดเวลา และเพิ่มผลผลิต Posted by 89-5MHZ on มิถุนายน 10, 2011 in นวัตกรรม สิ่งประดิษฐ์ · 0 Comment นายราชันทร์ หงส์โต ,นายอรรถกร จันทร์ชนะ และนายอาทิตย์ พูลทวี นักศึกษาคณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ร่วมกันคิด-ประดิษฐ์ เครื่องคัดขนาดกระเทียม เพื่อนำไปใช้ในงาน อุตสาหกรรม โดยมี ดร.จตุรงค์ ลังกาพินธุ์ เป็นที่ปรึกษาโครงการ โดย ดร.จตุรงค์ เปิดเผยว่า เครื่องคัดขนาดกระเทียม ที่นักศึกษาช่วยกันประดิษฐ์ขึ้น มีวัตถุประสงค์เพื่อเพิ่มความสามารถในการทำงานและลดเวลาในการคัดขนาดกลีบกระเทียม สำหรับใช้ในโรงงานอุตสาหกรรม ซึ่งเครื่องดังกล่าวก็ได้ถูกนำไปใช้จริงที่ โรงงานอุตสาหกรรมแปรรูปกระเทียม บริษัท อโกรไทย ยูเนี่ยน จำกัด ทั้งนี้ในส่วนของตัวเครื่องที่สร้างขึ้น ประกอบด้วยโครงสร้างชุดคัดขนาด ถังป้อนกลีบกระเทียม ช่องทางออกกลีบกระเทียม ระบบถ่ายทอดกำลัง และใช้มอเตอร์เป็นต้นกำลัง ส่วนหลักการทำงาน จะเริ่มจาก ผู้ทำงานป้อนกลีบกระเทียมลงในถังป้อน หลังจากนั้นกลีบกระเทียมจะถูกลำเลียงเข้าสู่ชุดคัดขนาด ที่จะทำการหมุนเพื่อร่อนให้กลีบกระเทียมที่มีขนาดเล็กกว่าไหลลงผ่านรูไปตามขนาดของรูตระแกรง และกลีบกระเทียมที่คัดขนาดแล้วก็จะออกมาทางช่องออก ทั้งนี้จากการทดสอบประสิทธิภาพการทำงานพบว่า เครื่องทำงานได้ดีที่ความเร็วของชุดคัดขนาด 20 รอบต่อนาที สามารถทำงานได้ 167.8 กิโลกรัม / ชั่วโมง อัตราในการคัดขนาดคือ 80.7 เปอร์เซ็นต์ และอัตราในการสิ้นเปลืองพลังงานไฟฟ้า 0.8 กิโลวัตต์/ชั่วโมง ค่าใช้จ่ายเฉลี่ยตกอยู่ที่ 0.2 บาท/กิโลกรัม เวลาคืนทุน 1.06 ปี และจุดคุ้มทุน 557.1 ชั่วโมงต่อปี นับว่าเป็นผลงานที่น่าภูมิใจ และเป็นประโยชน์สำหรับ อุตสาหกรรมที่แท้จริง เพราะนอกจากจะสามารถเป็นเครื่องมือที่มีประสิทธิภาพแล้วยังสามารถนำไปใช้ประโยชน์ได้อย่างจริงจัง ทั้งนี้ผู้ประกอบการที่สนใจสอบถามข้อมูลเพิ่มเติมได้ที่ คณะวิศวกรรมศาสตร์ มทร.ธัญบุรี หมายเลขโทรศัพท์ 02549-3400 และ 0-2549-3560 ในวันและเวลาราชการ
การอบแห้งลำไยด้วยแสงอินฟราเรด
ใช้แสง"อินฟราเรด"อบแห้งลำไย ย่นเวลาเท่าตัว-คุณภาพเต็มร้อย ที่มา http://www.aepd.doae.go.th/blog/?p=687 จากผลของการที่ประเทศ ไทยเป็นประเทศส่งออกลำไยใหญ่ที่สุดของโลก ทั้งในรูปของลำไยสดแช่แข็ง (freezing) ลำไยอบแห้ง (dehydration) และลำไยกระป๋อง (canning) โดยมีตลาดส่งออกหลักคือ จีน ฮ่องกง อินโดนีเซีย และบางประเทศในยุโรปนั้น อย่างไรก็ตาม เมื่อถึงฤดูกาลที่ลำไยออกสู่ตลาดจะเห็นว่าผลผลิตรวมของลำไยออกมาปริมาณมาก ทำให้ล้นตลาดและราคาตกต่ำ นั่นยังไม่นับการถูกกีดกันทางการค้าบางประการในการส่งออกไปขายยังต่างประเทศ แนวทางหนึ่งที่จะแก้ ปัญหาลำไยล้นตลาดและราคาตกต่ำคือ การพัฒนาคุณภาพการผลิตและการแปรรูป ซึ่งสอดคล้องกับ ผศ.ดร.กลอยใจ เชยกลิ่นเทศ นักวิจัยคณะเทคโนโลยีการเกษตร จากมหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ที่มีความตั้งใจจะพัฒนาผลิตภัณฑ์จากผลไม้ไทยให้มีคุณภาพทัดเทียมกับต่าง ประเทศ อีกทั้งไม่ต้องกังวลต่อปัญหาการถูกกีดกันทางการค้าจากข้ออ้างการใช้สารเคมี ซึ่งในที่สุดก็ค้นพบการอบลำไยแห้งที่มีคุณภาพ แถมยังใช้เวลาน้อยมากอีกด้วย วิธีการอบแห้ง ที่ค้นพบ คือ "การอบลำไยด้วยไมโครเวฟร่วมกับอินฟราเรด ตามด้วยลมร้อน" เป็นวิธีการที่ใช้เวลาอบเพียง 5 ชั่วโมง 25 นาที ซึ่งนับว่าเร็วมากเมื่อเปรียบเทียบกับการอบลำไยที่ใช้วิธีอบทั่วไปใน ปัจจุบันที่ใช้เวลา 12 ชั่วโมง โดยประมาณ ผลิตผลลำไยอบแห้งที่ใช้แสงอินฟราเรด ผศ.ดร.กลอยใจเล่าว่า จากการศึกษาพบว่า เนื้อลำไยที่อบในไมโครเวฟ 400 วัตต์ ระยะเวลา 5 นาที ร่วมกับอินฟราเรดที่อุณหภูมิจากแหล่งกำเนิด 350 องศาเซลเซียส ระยะเวลา 5 นาที พัก 5 นาที จำนวน 5 ครั้ง รวมเวลาทั้งหมด 75 นาที สามารถลดความชื้นในลำไยได้ประมาณ 1 ใน 3 ส่วน จากนั้นนำไปอบต่อด้วยลมร้อนอีก 13 ชั่วโมง ลำไยอบแห้งที่ได้มีลักษณะดี คือ คงรูปใกล้เคียงกับเนื้อลำไยที่คว้านเมล็ดออกใหม่ ไม่เหนียวติดมือ สีไม่คล้ำ เคี้ยวในปากนุ่มกว่าเนื้อลำไยแห้งที่อบด้วยลมร้อนอย่างเดียว ทดสอบความแห้ง นอกจากลดเวลาในการอบได้กว่าเท่าตัวแล้ว ผู้วิจัยยังเล่าว่า ในการอบแห้งโดยทั่วไปจะอาศัยแสงแดดและลมร้อนทำให้น้ำระเหยและไล่ความชื้นออก จากเนื้อลำไย ระยะเวลาในการอบแห้งขึ้นอยู่กับสภาวะและอุณหภูมิร่วมกับความเร็วของลมในการ ไล่อากาศชื้นออกจากเครื่องอบ มีการใช้สารละลายโพแทสเซียมเมตาไบซัลไฟต์ (potassium metabisulfite) ในอัตรา 0.5% (5 กรัมต่อน้ำ 1 ลิตร) แช่เนื้อลำไยนาน 2 นาที ก่อนจะอบเพื่อป้องกันจุลินทรีย์และลดการเปลี่ยนเป็นสีน้ำตาล (browning reaction) "แต่ในการอบแห้งลำไยด้วยวิธีการอบลำไยด้วยไมโครเวฟร่วมกับอินฟราเรด ตามด้วยลมร้อนนี้ จะไม่มีการเติมสารเคมีใดๆ ทำให้เนื้อลำไยที่ได้ไม่คล้ำ อีกทั้งยังไม่ต้องกังวลเรื่องการกีดกันทางการค้า (ด้วยเรื่องสารเคมี) จากต่างประเทศ หากเราส่งออกลำไยอบแห้ง ซึ่งการอบด้วยวิธีนี้ เชื่อว่าจะช่วยยกระดับการส่งออกลำไยอบแห้งได้ดีทีเดียว" ด้วยความสำเร็จจากการวิจัยนี้เอง ผศ.ดร.กลอยใจ เจ้าของไอเดียบอกว่า มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรีจึงได้ร่วมกับสำนักงานพัฒนาวิทยาศาสตร์ และเทคโนโลยีแห่งชาติ (สวทช.) และบริษัท พรีม่าเอเชีย เทคโนโลยี จำกัด นำหลักการดังกล่าวมาเป็นแนวทางในการคิดค้นประดิษฐ์เครื่องอบลำไย ด้วยฝีมือของคนไทย เพื่อออกมารองรับความต้องการของเกษตรกรที่กำลังประสบปัญหาลำไยสดล้นตลาดใน ปัจจุบัน ส่วนเกษตรกรคนใดสนใจองค์ความรู้หลักการอบแห้งลำไยเพื่อนำไปพัฒนา ผลิตภัณฑ์ของตน สามารถติดต่อสอบถามรายละเอียดได้ที่ ผศ.ดร.กลอยใจ เชยกลิ่นเทศ ยินดีจะเปิดเผยเพื่อประโยชน์ต่อสาธารณชนด้วยความเต็มใจยิ่ง ที่มา : หนังสือพิมพ์คมชัดลึก หน้าข่าว เกษตร/เกษตรคนเก่ง วันที่ 20 เมษายน 2553
บรรจุภัณฑ์รักษ์สิ่งแวดล้อม ตอนที่ 2
ตารางที่ 7.4 ปริมาณเถ้าถ่านที่เหลือจากการเผาไหม้โดยไม่ทำปฏิกิริยา (Inert Residue) ค่าของพลังงานที่ได้จากการเผาและปริมาณซัลเฟอร์จาก 1 ตันของบรรจุภัณฑ์ประเภทต่างๆ บรรจุภัณฑ์ Inert Residue (%) พลังงาน (บีทียู/ปอนด์) เปอร์เซ็นต์ซัลเฟอร์ โดยน้ำหนักที่แห้ง กระดาษแข็ง 4 7,841 0.14 กระดาษอื่นๆ 8 7,793 0.12 โลหะ 91 742 0.01 แก้ว 99 84 0.00 ไม้ 3 8,236 0.11 ฟิล์มพลาสติก 7 13,846 0.07 พลาสติกต่างๆ 20 9,049 0.55 แหล่งที่มา : Darnay, A. and Franklin, W.E. "The Role of Packaging in Solid Waste Management 1996 to 1976." คุณสมบัติอย่างอื่นที่ต้องพิจารณาคือ ค่าของพลังงานที่ได้จากการเผา (BTU Content) ปริมาณของซัลเฟอร์ และโอกาสที่จะทำให้เตาเผาเสียหาย ค่าของพลังงานที่ได้จากการเผาเป็นองค์ประกอบสำคัญในการเลือกเตาเผา เพราะว่าพลังงานที่ได้จากการเผาสามารถนำไปใช้ได้ใหม่ ส่วนปริมาณซัลเฟอร์ที่ได้นั้นสามารถใช้เป็นดรรชนีในการวัดความเป็นพิษของขยะและซากบรรจุภัณฑ์ที่ได้จากการเผาไหม้ ในตารางที่ 7.4 พบว่าซากบรรจุภัณฑ์ที่เผาไหม้ก่อให้เกิดปริมาณซัลเฟอร์ค่อนข้างน้อย กล่าวคือ ใน 1 ตันของบรรจุภัณฑ์จะมีปริมาณซัลเฟอร์ไม่มากกว่า 1 กิโลกรัม สำหรับอากาศที่จะทำความเสียหายให้แก่เตาเผานั้น บรรจุภัณฑ์แก้วมีโอกาสมากที่สุด เนื่องจากเมื่อแก้วหลอมละลายแล้ว น้ำแก้วมีโอกาสติดหลงเหลืออยู่ตามผนังของเตาเผาจะทำให้ผนังของเตาเผาแตกได้ ถ้าเผาถึงอุณหภูมิ 700°C พลาสติกบางประเภทที่อยู่ในรูปของถาดและขวดหนาๆ อาจก่อให้เกิดปัญหาได้เช่นกัน เพราะเมื่อหลอมละลายแล้วมีโอกาสแข็งตัวและอุดช่องทางออกจากเตาเผาเมื่อสัมผัสกับอากาศในบรรยากาศพลาสติกที่มีผิวบางและฟิล์มไม่ค่อยประสบปัญหาในการทำความเสียหายให้แก่เตาเผา การทำให้บรรจุภัณฑ์เสื่อมสลายโดยวิธีการทางชีวภาคนั้น การกำจัดซากบรรจุภัณฑ์วิธีสุดท้ายที่เริ่มได้รับความนิยมคือ Biodegradation วิธีนี้จะประยุกต์ใช้ได้เฉพาะสารอินทรีย์ ดังนั้นจึงใช้ได้เฉพาะบรรจุภัณฑ์อาหารที่ผลิตจากกระดาษ ไม้และสิ่งทอ ซากบรรจุภัณฑ์ที่ผลิตจากวัสดุเหล่านี้จะเสื่อมสลายทางชีวภาคช้าหรือเร็วขึ้นอยู่กับความหนา หรือส่วนประกอบของบรรจุภัณฑ์ที่เคลือบด้วยสารที่ไม่เสื่อมสลายได้ (Nondegradable) ซากบรรจุภัณฑ์ที่ได้รับการย่อยสลายทางชีวภาคนี้แล้วจะกลายเป็นสารอินทรีย์ที่ไม่ทำปฏิกิริยา (Inert Organic Materials) ซึ่งมักจะใช้ประโยชน์เป็นสารปรับคุณภาพของดิน (Soil Conditioning) ในการประยุกต์เทคโนโลยีทางชีวภาคมาใช้ในการย่อยสลายซากบรรจุภัณฑ์จำต้องคำนึงความสามารถที่จะย่อยสลายด้วยบักเตรี และพิจารณาถึงผลที่ได้จากการย่อยสลายว่าจะนำไปใช้ประโยชน์อะไรต่อไปได้ จากความรู้ของวจรบรรจุภัณฑ์และวิธีการกำจัดซากบรรจุภัณฑ์อาหารดังกล่าว ย่อมเป็นแนวทางให้ผู้ออกแบบบรรจุภัณฑ์สามารเลือกประเภทวัสดุที่มีวงจรชีวิตสั้นและสามารถกำจัดได้ง่ายหรือกล่าวอีกนัยหนึ่งคือมีโอกาสเป็นมิตรกับสิ่งแวดล้อมมากขึ้น 7.2 สถานะของวัสดุบรรจุภัณฑ์ต่อสิ่งแวดล้อม สถานะของวัสดุบรรจุภัณฑ์แต่ละประเภทที่มีต่อการใช้งานและผลกระทบที่มีต่อสิ่งแวดล้อมสามารถแยกตามประเภทของวัสดุได้ดังนี้ 7.2.1 บรรจุภัณฑ์ผลิตจากเยื่อและกระดาษ การเวียนมาผลิตใหม่เป็นคุณสมบัติเด่นของวัสดุเยื่อและกระดาษ เยื่อเส้นใยยาวเป็นเยื่อที่เหมาะสมในการนำมาผลิตใหม่มากที่สุด โดยปกติจะนำมาผลิตใหม่ได้ 4 ครั้ง จากนั้นแล้วคุณภาพของเยื่อจะเริ่มเสื่อมคุณภาพ กระดาษที่นำกลับมาผลิตใหม่อาจแบ่งเป็น กระดาษหนังสือพิมพ์ กระดาษเหนียวสีน้ำตาลดังรูปสัญลักษณ์ที่แสดงไว้ในรูป (ก) หน้า 228 และกล่องกระดาษแข็งที่ผิวด้านหลังเป็นสีขาว มีสิ่งที่น่าสังเกตในแง่ของพลังงานที่ใช้ในการผลิตแปรรูปบรรจุภัณฑ์กระดาษซึ่งมีค่าน้อยมากเมื่อเทียบกับพลังงานที่ใช้ในการผลิต กล่าวคือการใช้พลังงานในการผลิตบรรจุภัณฑ์จะใช้ประมาณร้อยละ 5ของพลังงานที่ใช้ในการผลิตกระดาษ ในปี พ.ศ. 2539 คนไทยใช้กระดาษรวมโดยเฉลี่ยคนละ 37 กิโลกรัมต่อปี หรือประมาณ 2,000,000 ตันต่อปี มีอัตราการเพิ่มขึ้นจากปี 2537 ประมาณร้อยละ 15 และมีอัตราเพิ่มขึ้นเรื่อยๆ ในกระบวนการผลิตกระดาษ 1 ตันต้องใช้ต้นไม้ประมาณ 1.2 - 2.2 ตัน (น้ำหนักอบแห้ง) กระแสไฟฟ้า 1,000 กิโลวัตต์ต่อชั่วโมง ใช้น้ำมัน 300 ลิตร ใช้น้ำ 20 ลูกบาศก์เมตร ในขณะเดียวกันมีการนำเข้าเศษกระดาษ โดยในปี 2535 มีการนำเข้า 342,700 ตัน และในปี 2540 มีการนำเข้า 460,596 ตัน จากปริมาณดังกล่าวนี้ย่อมแสดงว่าความพยายามในการนำเอาเศษกระดาษกลับมารีไซเคิลของประเทศไทยจะสามารถการนำเข้าของเศษกระดาษได้ ทั้งยังช่วยลดการใช้ทรัพยากรป่าไม้ ลดปริมาณมูลฝอย ลดการใช้พลังงานไฟฟ้า รวมถึงค่าใช้จ่ายในกระบวนการผลิต 7.2.2 บรรจุภัณฑ์ที่ผลิตจากพลาสติก เริ่มตั้งแต่ปี ค.ศ. 1835 เป็นต้นมา พลาสติกได้รับการค้นพบด้วยวิธีการผลิตเชิงพาณิชย์ ในปัจจุบันนี้วัสดุพลาสติกมีใช้ในวงการบรรจุภัณฑ์ประมาณร้อยละ 30 - 40 โดยมีปริมาณการใช้ คือร้อยละ 50 ใช้ในอุตสาหกรรมพลาสติกอ่อนตัว (Flexible Packaging) อีกร้อยละ 40 ใช้ในบรรจุภัณฑ์เป่าเป็นขวด ส่วนที่เหลือใช้เป็นกาวหรือสารยึดติด พลาสติกที่นิยมใช้ในอุตสาหกรรมบรรจุภัณฑ์ได้แก่ PE PP PS PVC และ PET ในประเทศแถบยุโรป บรรจุภัณฑ์พลาสติกที่พบในกองขยะตามบ้านปรากฏว่ามีประเภทของบรรจุภัณฑ์พลาสติกแยกได้ดังนี้ ตารางที่ 7.5 ปริมาณบรรจุภัณฑ์พลาสติกที่พบในขยะตามบ้านของประเทศแถบยุโรป ประเภทพลาสติก ปริมาณที่พบในขยะ (ร้อยละ) PE + PP 65 PS + EPS 15 PVC 10 PET 5 อื่นๆ 5 แหล่งที่มา : Michaeli, Greif, Kanfmann, Vosseburger, 1992 พลาสติกแต่ละประเภทมีคุณสมบัติแตกต่างกันและจำต้องเลือกใช้ให้เหมาะสมกับสินค้า ในแง่ของการรณรงค์รักษาสิ่งแวดล้อม พลาสติกแต่ละประเภทมีบทบาทต่อสิ่งแวดล้อมดังต่อไปนี้ PET มีคุณสมบัติทนความร้อนได้ในระดับหนึ่ง แต่ทนต่อการกระแทกได้ดีและมีความแวววาว คุณสมบัติเด่นอีกประการหนึ่งคือ ทนต่อการซึมผ่านของก๊าซได้เป็นอย่างดี ทำให้ขวด PET เป็นบรรจุภัณฑ์ชนิดเดียวกับที่ใช้น้ำอัดลมได้ ด้วยคุณสมบัติเด่นดังกล่าวจึงได้รับการยอมรับใช้งานอย่างกว้างขวางในการบรรจุเครื่องดื่มประเภทต่างๆและเครื่องชูรสอาหารอื่นๆ เฉพาะในสหรัฐอเมริกามีปริมาณการใช้ขวด PET ถึง 1.6 พันล้านปอนด์ต่อปี ขวด PET ที่ใช้แล้วสามารถแปรรูปเป็นวัตถุดิบ ในการผลิตเป็นพรม เสื้อผ้า และตุ๊กตา เป็นต้น และเป็นพลาสติกที่มีการนำกลับมาผลิตใหม่มากที่สุด ในเมืองไทยเริ่มมีการนำขวด PET ที่ใช้แล้วมารีไซเคิลเป็นพรมตั้งแต่ปี พ.ศ. 2531 โดยใช้เทคโนโลยีจากญี่ปุ่น ซึ่งมีความสามารถรองรับขวด PET ที่บดละเอียดแล้ว 400 ตันต่อเดือนและสามารถทอเป็นพรมได้ 1,000,000 ตารางเมตรต่อเดือน ความสามารถในการนำขวด PET กลับมาผลิตใหม่เป็นพรมนั้นจะใช้ขวด PET จำนวน 7 - 8 ขวด (ขึ้นกับขนาดของขวด) มาทอเป็นพรมได้ 1 ตารางเมตร โดยรับซื้อจากแหล่งต่างๆ 15 แห่งทั่วทั้งราชอาณาจักร นับว่าเป็นความก้าวหน้าทางเทคโนโลยีรีไซเคิล ซึ่งมีเพียงไม่กี่ประเทศในโลกนี้ที่สามารถนำ PET มาผลิตเป็นสินค้าอย่างอื่น PVC เป็นพลาสติกที่ได้รับความนิยมลดลงมาเรื่อย สืบเนื่องจากมีสารตกค้างของ Vinyl Chloride แม้ว่าจะมีจำนวนน้อยจนไม่เป็นอันตรายต่อสุขภาพก็ตาม การใช้ PVC ในวงการบรรจุภัณฑ์อาจแยกเป็นร้อยละ 60 ใช้กับอาหารและยา และร้อยละ 40 ใช้ในบรรจุภัณฑ์สำหรับอุตสาหกรรมอื่นๆ การนำพลาสติกกลับมาผลิตใหม่นี้คงจะได้รับการรณรงค์ส่งเสริมมากขึ้นเรื่อยๆ พร้อมทั้งควรจะมีกฎข้อบังคับให้ระวังรักษาความปลอดภัยในการนำพลาสติกกลับมาผลิตหรือใช้ใหม่โดยเฉพาะอย่างยิ่งการนำกลับมาบรรจุอาหารนั้นมีความเสี่ยงสูงมาก ในปัจจุบันประเทศสหรัฐอเมริกาได้มีการนำบรรจุภัณฑ์พลาสติกกลับมาผลิตใหม่ดังนี้ ตารางที่ 7.6 บรรจุภัณฑ์พลาสติกที่นำกลับมาผลิตใหม่จากขยะตามบ้านในสหรัฐอเมริกา ประเภทของบรรจุภัณฑ์ การนำกลับมาผลิตใหม่ (ร้อยละ) ขวดน้ำดื่ม 65 ขวดน้ำยาทำความสะอาด 50 ขวดประเภทอื่นๆ 10 ฟิล์มบรรจุภัณฑ์ 5 เฉลี่ยพลาสติกชนิดต่างๆ 30 แหล่งที่มา : R.G. Saba and W.E. Pearson "Curbside Recycling Infrastructure : A Pragmatic Approach" American Chemical Society Washington D.C. (1995) 7.2.3 บรรจุภัณฑ์ที่ผลิตจากโลหะ บรรจุภัณฑ์โลหะโดยเฉพาะกระป๋องได้รับความนิยมใช้อย่างกว้างขวางตั้งแต่โบราณกาล บรรจุภัณฑ์โลหะที่เป็นเหล็กได้วิวัฒนาการมาใช้อะลูมิเนียมทั้งในรูปแบบกระป๋อง และเปลวอะลูมิเนียมที่นำมาผลิตเป็นวัสดุบรรจุภัณฑ์อ่อนนุ่ม (1) กระป๋องเหล็ก ปัญหาการเก็บมาผลิตใหม่ของบรรจุภัณฑ์กระป๋อง คือ สารที่ใช้เคลือบภายในกระป๋อง ซึ่งได้มีการรณรงค์การทำให้หลอมละลายด้วยความร้อนได้ง่าย และต้องทำการแยกสารที่ใช้เคลือบนี้ในเตาหลอมแยกต่างหากก่อน ข้อดีของกระป๋องออกมาได้ สำหรับกระป๋อง 3 ชิ้นแบบเก่าที่ใช้น้ำประสานทองในการเชื่อมตัวกระป๋องเข้าด้วยกันและกระป๋องที่มีเนื้อดีบุกผสมอยู่ การนำกลับมาใช้ผลิตใหม่ต้องแยกเอาดีบุกและโลหะหนักออกมาก่อนแม้ว่าจะมีปริมาณเพียงร้อยละ 0.01 เพราะสารที่ตกค้างอยู่นี้จะก่อให้เกิดปัญหาในการรีดเหล็กเมื่อนำเหล็กไปหลอมใหม่ (2) กระป๋องอะลูมิเนียม บรรจุภัณฑ์อะลูมิเนียมที่ได้รับความนิยมมากในปัจจุบันนี้คือ กระป๋องอะลูมิเนียมบรรจุน้ำอัดลมและเครื่องดื่มประเภทต่างๆ นอกเหนือจากเปลวอะลูมิเนียมที่ใช้ในบรรจุภัณฑ์อ่อนนุ่ม สืบเนื่องจากบรรจุภัณฑ์อะลูมิเนียมที่ผลิตจากอะลูมิเนียมที่มีความบริสุทธิ์ถึงร้อยละ 99 โอกาสที่จะนำบรรจุภัณฑ์อะลูมิเนียมกลับมาใช้ใหม่จึงให้ผลตอบแทนทางด้านเศรษฐกิจสูง แม้ว่าแหล่งทรัพยากรธรรมชาติที่นำมาผลิตเป็นอะลูมิเนียมนั้น เชื่อกันว่ามีอยู่ในโลกนี้มากเป็นอันดับสามก็ตาม แต่แร่ที่ใช้กันมากที่สุด คือ Bauxite 4 กิโลกรัมสามารถผลิตเป็นเปลวอะลูมิเนียมได้เพียง 1 กิโลกรัมเท่านั้น กระป๋องอะลูมิเนียมที่ใช้ในอุตสาหกรรมน้ำอัดลมในประเทศที่พัฒนาแล้ว มีการนำกลับมาผลิตใหม่ร้อยละ 95 และอะลูมิเนียมที่ได้จากการนำกลับมาผลิตใหม่นี้กว่าร้อยละ 90 จะนำมาผลิตเป็นกระป๋อง ส่วนที่เหลืออีกประมาณร้อยละ 10 ใช้ผลิตเป็นสินค้าอะลูมิเนียมชนิดอื่นๆ ในกระบวนการนำบรรจุภัณฑ์อะลูมิเนียมกลับมาผลิตใหม่นั้น โดยทั่วไปจะใช้หลักความแตกต่างของความหนาแน่นของบรรจุภัณฑ์กระป๋องอะลูมิเนียมเป็นมาตรฐานในการแยกออกจากกองขยะหรือบรรจุภัณฑ์ประเภทอื่นๆ หรือใช้ระบบกระแสไฟฟ้าที่เรียกว่า Eddy Current โดยการสร้างสนามไฟฟ้า ทำการผลักเอากระป๋องอะลูมิเนียมออกจากกองขยะ ด้วยเหตุนี้ การนำอะลูมิเนียมกลับมาหลอมเหลวใหม่ จะสามารถประหยัดพลังงานจากการนำกระป๋องอะลูมิเนียมกลับมาผลิตใหม่ได้มากกว่าประเทศทางยุโรป 7.2.4 บรรจุภัณฑ์ที่ผลิตจากแก้ว บรรจุภัณฑ์แก้วนับเป็นบรรจุภัณฑ์ชนิดเดียวที่สามารถผลิตได้ครบกระบวนการผลิตภายในโรงงานเดียวกัน ส่งผลให้เศษแก้วที่ได้จากการผลิตสามารถนำกลับมาใช้ใหม่ภายในโรงงานได้อีก นอกจากนี้ ความจำเป็นในการผลิตที่ต้องใช้เศษแก้วผสมในเตาหลอมแก้วทำให้มีความจำเป็นต้องนำขวดแก้วที่ใช้แล้วกลับเข้าสู่โรงงานผลิตแก้ว ทำให้มีการนำแก้วกลับคืนจากผู้บริโภคร้อยละ 25 ของเศษแก้วที่ต้องใช้ในโรงแก้ว การนำขวดแก้วกลับมาหลอมละลายใช้ใหม่จำเป็นต้องมีการแยกสีของขวดก่อน นอกเหนือจากการนำมาผลิตใหม่แล้ว บรรจุภัณฑ์แก้วยังมีการนำกลับมาใช้ใหม่มากที่สุดในจำนวนบรรจุภัณฑ์ทั้งหลาย ตัวอย่างเช่น ขวดน้ำอัดลมสมัยเก่า หรือขวด Return Bottle เคยมีการนำกลับมาบรรจุใหม่ได้หลายสิบครั้ง การนำกลับมาบรรจุใหม่นี้ ในประเทศที่พัฒนาแล้ว จำนวนครั้งของขวดเบียร์จะมีการนำกลับมาใช้ใหม่โดยเฉลี่ยประมาณ 8 ครั้ง จากการศึกษาในประเทศสวีเดน พบว่าถ้ามีการนำขวดแก้วกลับมาใช้ได้ถึง 50 ครั้งจะสามารถลดพลังงานที่ใช้ในการผลิตแก้วใหม่ได้ถึงร้อยละ 50 นอกเหนือจากการเปรียบเทียบพลังงานที่ใช้ในการผลิตแล้ว ยังต้องพิจารณาถึงสุขลักษณะของบรรจุภัณฑ์ที่นำกลับมาใช้ใหม่โดยจำเป็นต้องผ่านการทำความสะอาดอย่างถูกต้อง ในประเทศไทยมีการนำขวดแก้วกลับมาใช้ใหม่ คิดเป็นปริมาณได้ 155,916.60 ตัน หรือประมาณร้อยละ 23 ของขวดแก้วที่ผลิต และเป็นสิ่งที่น่ายินดีอย่างยิ่ง ในปี พ.ศ. 2536 บริษัท บางกอกกล๊าส จำกัด ได้ริเริ่มโครงการรณรงค์หมุนเวียนการใช้เศษแก้วในโรงเรียนต่างๆ โดยมีการนำเศษแก้วหรือขวดแก้วที่เหลือใช้จากครัวเรือน โดยแยกออกจากขยะและรวบรวมนำมาทิ้งในถังเก็บเศษแก้วที่โรงเรียน ผลปรากฏว่ามีโรงเรียนเข้าร่วมโครงการนี้เกือบ 200 โรงเรียน และสามารถนำกลับมาผลิตใหม่ได้มากถึง 1,000 ตันในปี 2540 จากอดีตที่ผ่านมา 30 ปี กระบวนการผลิตบรรจุภัณฑ์แก้วได้วิวัฒนาการอย่างมากมาย ทำให้ได้บรรจุภัณฑ์แก้วที่บางลงแต่แข็งแรงเท่าๆ กับบรรจุภัณฑ์แก้วในอดีต ส่งผลให้พลังงานที่ใช้ลดลง นอกจากนี้ เศษแก้วที่นำกลับมายังสามารถนำไปใช้กับอุตสาหกรรมอื่น เช่น การผลิตอิฐแก้ว การผลิตใยสังเคราะห์ เป็นต้น <<ย้อนกลับ บรรจุภัณฑ์รักษ์สิ่งแวดล้อม ตอนที่1อ่านต่อ บรรจุภัณฑ์รักษ์สิ่งแวดล้อม ตอนที่3 >> <<กลับสู่หน้าหลัก
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดมะรุม ส่วนทั้งเมล็ดและเมล็ดใน
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดมะรุม ส่วนทั้งเมล็ดและเมล็ดใน (Effect of moisture content on some physical properties of Moringa seed and kernel) สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง กรณ์อัฐชญา วีณุตตรานนท์ มาริสา คงเอื้อสิริกุล รุ่งนภา กองทุ่งมน วสันต์ อินทร์ตา บทคัดย่อ การศึกษาคุณสมบัติทางกายภาพของเมล็ดมะรุม เป็นการศึกษาคุณลักษณะของเมล็ดส่วนทั้งเมล็ด และ เมล็ดใน เพื่อใช้ประโยชน์ในด้านต่างๆ เช่น การใช้งานเพื่อการขนส่ง การเก็บเกี่ยวที่ดี และบรรจุหีบห่อ ซึ่งได้พิจารณาจากปริมาณความชื้นฐานเปียกที่เมล็ดมะรุมได้รับ มีการกำหนดความหลากหลายของความชื้นทั้งหมด 5 ระดับ ในส่วนทั้งเมล็ด ตั้งแต่ 8.32-20.32 %wb. และในส่วนเมล็ดใน ตั้งแต่ 6.58 - 18.58 %wb. โดยคุณสมบัติที่ได้ทำการศึกษากับช่วงระยะความชื้นนั้น ได้แก่ ค่าเส้นผ่านศูนย์กลางเฉลี่ยเรขาคณิต, ความเป็นทรงกลม, มวล 100 เมล็ด, พื้นที่ภาพฉาย, ความหนาแน่นรวม, ความหนาแน่นเนื้อ, ความพรุน, ปริมาตรต่อหนึ่งเมล็ด, ความเร็วสุดท้าย และสัมประสิทธิ์ความเสียดทานสถิต ซึ่งในส่วนทั้งเมล็ดมีค่า 1.2391 - 1.2690 เซนติเมตร, 0.8947-0.9267 %, 24.23-27.71 กรัม, 1.6030-1.4571 ตารางเซนติเมตร, 0.1969-0.1654 กรัมต่อมิลลิลิตร, 3.7638 - 2.6763 กรัมต่อมิลลิลิตร, 94.7695-93.8211 %, 0.0810-0.0868 ลูกบาศก์เซนติเมตร, 9.78-12.67 เมตรต่อวินาที ตามลำดับ และสัมประสิทธิ์ความเสียดทานที่แผ่นอะลูมิเนียม แผ่นไม้อัด และแผ่นยาง มีค่า 0.4796-0.4956, 0.6126-0.6336, 0.8492-0.8929 ตามลำดับ จะเห็นได้ว่ากราฟจะเป็นแบบเชิงเส้น ค่าแรงเสียดทานจะเพิ่มขึ้นตามลำดับ และในส่วนเมล็ดใน มีค่า 0.7390-0.7482 เซนติเมตร, 0.9425-0.9520 %, 18.23-20.55 กรัม, 0.5720-0.5298 ตารางเซนติเมตร, 0.4796-0.4631 กรัมต่อมิลลิลิตร, 5.8278- 3.2182 กรัมต่อมิลลิลิตร, 91.7699-85.6089 %, 0.0318-0.0381 ลูกบาศก์เซนติเมตร, 10.30-11.53 เมตรต่อวินาที ตามลำดับ และสัมประสิทธิ์ความเสียดทานที่แผ่นอะลูมิเนียม แผ่นไม้อัด และแผ่นยาง มีค่า 0.3019-0.3246, 0.3822-0.4119, 0.4835-0.5669 ตามลำดับ จะเห็นได้ว่ากราฟจะเป็นแบบเชิงเส้น ค่าแรงเสียดทานจะเพิ่มขึ้นตามลำดับ จากศึกษาเมล็ดมะรุมจะเห็นได้ว่า กราฟความสัมพันธ์ที่ได้จะเป็นแบบเส้นตรง ลักษณะกราฟเพิ่ม ยกเว้น พื้นที่ภาพฉาย ความหนาแน่นรวม ความหนาแน่นเนื้อ และ ความพรุน จะมีลักษณะกราฟเป็นกราฟลดทั้งส่วนทั้งเมล็ดและเมล็ดใน 1. บทนำ มะรุม มีชื่อทางวิทยาศาสตร์ว่า Moringa oleifera จัดอยู่ในตระกูล Moringaceae มีถิ่นกำเนิดในประเทศแถบเอเชีย แต่พบได้โดยทั่วไปในแอฟริกา และเขตร้อนของทวีปอเมริกา เป็นไม้ผลัดใบ ขึ้นได้ในทุกภูมิประเทศ สำหรับประเทศไทย มะรุมพื้นเมืองที่ปลูกโดยทั่วไปเป็นพวก M.oleifera ซึ่งมีสายพันธุ์จากอินเดียแถบเทือกเขาหิมาลัย จากการศึกษาโดยนักวิทยาศาสตร์ชาวเยอรมัน พบว่า มะรุมเป็นพืชที่มีสารจำพวก Polyelectrolyte อยู่ในเมล็ด มีคุณสมบัติในการช่วยตกตะกอน และในแถบทวีปแอฟริกา เช่น ซูดาน ใช้เมล็ดมะรุมกำจัดความขุ่นในน้ำ ซึ่งมีผลที่น่าพอใจ (ภิญญ์ฑิตา ,2531) ในข้อมูลทางวิทยาศาสตร์ ซึ่งส่วนใหญ่เป็นการวิจัยในระดับเซลล์และสัตว์ทดลอง พบว่า สารสกัดน้ำมันจากเมล็ดมะรุมสามารถต้านและกำจัดอนุมูลอิสระได้ และ สารสกัดน้ำมันจากเมล็ด ที่เป็นผลิตภัณฑ์สำหรับใช้กับตา พบว่าใช้ได้ดีในหนูทดลอง ซึ่งมีฤทธิ์ยับยั้งการเจริญเติบโตของเชื้อแบคทีเรีย ที่มีสาเหตุจาก Staphylococcus aureus (http://www.medplant.mahidol.ac.th/document/moringa.asp) เมล็ดมะรุม สามารถสกัดเป็นน้ำมันได้ น้ำมันเมล็ดมะรุม ประกอบไปด้วย Sterol ได้แก่ campesterol, stigmasterol , b-sitosterol , D5-avenasterol , clerosterol , 24-methylenecholesterol , D7-campestanol,stigmastanol และ 28-isoavenasterol นอกจากนี้ยังประกอบไปด้วยกรดไขมันเช่น Oleic oils (C18:1, 67.90%-76.00%) , C16:0 (6.04%-7.80%) , C18:0 (4.14%-7.60) , C20:0 (2.76%-4.00%) และ C22:0 (5.00%-6.73) ซึ่งเป็นกรดไขมันอิ่มตัวต่ำ และกรดไขมันไม่อิ่มตัวสูง โดยทั้งหมดมีปริมาณน้ำมันสะสมอยู่ 26% ปริมาณฟอสโฟลิปิดต่ำร้อยละ 0.17 น้ำมันที่สกัดได้มีสีเหลืองค่อนข้างใส ไม่พบกรดไซโคลโพรพีน ซึ่งเป็นพิษในน้ำมันเมล็ดมะรุม ปริมาณทองแดงและตะกั่วที่เกินมาตรฐานกระทรวงอุตสาหกรรม คาดว่าจะสามารถกำจัดโลหะหนักเหล่านี้ได้ด้วยกระบวนการรีฟายน์ มีแนวโน้มที่จะใช้ผลิตน้ำมันบริโภคและสามารถนำมาทดแทนน้ำมันมะกอกในอุตสาหกรรมเคมีได้ (จันทนา,2539) วัตถุประสงค์ของการศึกษานี้เพื่อศึกษาคุณสมบัติทางกายภาพของเมล็ดมะรุม เป็นการศึกษาคุณลักษณะของเมล็ดได้แก่ ค่าเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต ความเป็นทรงกลม มวล 100 เมล็ด พื้นที่ภาพฉาย ความหนาแน่นรวม ความหนาแน่นเนื้อ ความพรุน ปริมาตรต่อหนึ่งเมล็ด ความเร็วสุดท้าย และ สัมประสิทธิ์ความเสียดทานสถิตเพื่อใช้ประโยชน์จากเมล็ด เช่น การใช้งานเพื่อการขนส่ง การบรรจุหีบห่อ การออกแบบเครื่องจักรในการผลิตผลิตภัณฑ์จากเมล็ด ซึ่งมีประโยชน์ในการใช้งานในอุตสาหกรรม 2. วัสดุและวิธีการทดลอง 2.1 วัสดุ เมล็ดมะรุมที่ใช้ในการทดลอง จากร้านสมุนไพรออนไลน์ 196/1 ม. 8 ต.นิคมสร้างตนเอง อ.เมืองฯ จ.ลพบุรี 15000 บรรจุในถุงปิดผนึกเก็บไว้ในอุณหภูมิห้อง นำเมล็ดมะรุมมาทำความสะอาด โดยการคัดแยกสิ่งแปลกปลอม และเมล็ดที่ไม่สมบูรณ์ออกจากกลุ่มตัวอย่างเมล็ดที่จะใช้ศึกษา แบ่งกลุ่มการศึกษาเป็น 2 กลุ่ม คือ 1. ทั้งเมล็ด (รวมเปลือก) 2. เมล็ดใน (แกะเปลือก) โดยตลอดขั้นตอนการทดลอง จะเรียกโดยรวมว่า เมล็ดมะรุม รูปที่1 แสดงลักษณะรูปร่างของเมล็ดมะรุม ก. แสดงลักษณะของทั้งเมล็ด ข. แสดงลักษณะของเมล็ดใน 2.2 วิธีการ นำเมล็ดตัวอย่างหาค่าความชื้นเริ่มต้น โดยการนำเมล็ดใส่กระทงชั่งน้ำหนักกระทงด้วยเครื่องชั่งดิจิตอล ความละเอียด 4 ตำแหน่ง เติมเมล็ดตัวอย่างประมาณ 5 กรัม บันทึกน้ำหนักกระทงและน้ำหนักเนื้อเมล็ดตัวอย่างไว้ นำเมล็ดตัวอย่างอบในตู้ควบคุมอุณหภูมิ โดยใช้อุณหภูมิ 105 องศาเซลเซียส อบเป็นเวลา 3 ชั่วโมง แล้วจึงชั่งน้ำหนักตัวอย่างหลังอบ หาความชื้นเริ่มต้นจากสมการ ปรับความชื้น โดยการนำค่าความชื้นที่ได้ มาหาปริมาณน้ำที่จะใส่เพิ่ม เพื่อให้ได้ความชื้นที่ต้องการ โดยการคำนวณจาก ความชื้นที่ต้องการปรับมีค่าที่เพิ่มขึ้นจากความชื้นเริ่มต้นครั้งละ 3% จำนวน 4 ความชื้น นำเมล็ดตัวอย่างใส่ถุงพลาสติกจำนวน 3 ถุง ต่อ 1 ระดับความชื้น ถุงละ 100 เมล็ด แล้วนำปริมาณน้ำที่ได้จากการคำนวณเติมลงไปในเมล็ดตัวอย่างทั้ง 4 ความชื้น ซึ่งแต่ละระดับความชื้นจะมีปริมาณน้ำที่ไม่เท่ากัน ตามความชื้นที่คำนวณได้ นำถุงเมล็ดตัวอย่างที่เติมน้ำเรียบร้อยแล้วปิดผนึกปากถุง ไม่ให้อากาศออกหรือเข้าได้ แล้วนำไปเก็บไว้ในตู้เย็น ที่อุณหภูมิ 5 อาศาเซลเซียส เป็นเวลา 1 สัปดาห์ ซึ่งในระหว่างนั้นให้เขย่าถุงทุกๆ 2 วัน เพื่อการกระจายตัวของน้ำเป็นไปอย่างทั่วถึง 2.2.1 คุณสมบัติทางกายภาพ 1) ขนาด (size) คัดเลือกเมล็ดมะรุมที่มีความสมบูรณ์จำนวน 100 เมล็ดของแต่ละความชื้น นำเมล็ดทั้งหมดมาวัดขนาดทั้งความยาว ความกว้าง และความหนา ของแต่ละเมล็ด ในการวัดครั้งนี้ใช้เวอร์เนียคาลิปเปอร์ ซึ่งมีค่า Least count ที่ 0.05 เซนติเมตร แล้วนำค่าที่ได้ทั้งหมดมาหาค่าเฉลี่ย นำค่าความกว้าง ความยาว และ ความหนาของเมล็ดคำนวณหาเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) ของเมล็ดข้าวโพดได้โดยการคำนวณที่ใช้ความสัมพันธ์ต่อไปนี้ และหาความเป็นทรงกลม โดยใช้ความสัมพันธ์จาก 2) น้ำหนัก 100 เมล็ด (100 seed mass) ชั่งน้ำหนักเมล็ดตัวอย่าง โดยนำเมล็ดตัวอย่างที่ความชื้นต่างๆ ทั้ง 5 ความชื้น โดยความชื้นเริ่มต้นนั้นต้องนำตัวอย่างวางไว้ให้มีอุณหภูมิเท่ากับอุณหภูมิห้อง และนำตัวอย่างความชื้นๆละ 100เมล็ด นำมาชั่งน้ำหนัก โดยการใช้เครื่องชั่ง 2 ตำแหน่ง ที่มีค่าความละเอียดอยู่ที่ 0.01 กรัม 3) พื้นที่ภาพฉาย (projected area) คัดเลือกเมล็ดมะรุมที่มีความสมบูรณ์ จำนวน 50 เมล็ด ของแต่ละความชื้น นำเมล็ดทั้งหมดมาจัดวางเพื่อถ่ายภาพ โดยกล้องโทรศัพท์มือถือ Galaxy S Samsung ความละเอียด 5 ล้านพิกเซลจากมุมสูง ใช้โปรแกรม PhotoshopCS3 เพื่อหาพื้นที่ (ตารางเซนติเมตร) ของเมล็ดมะรุม 1 เมล็ด แล้วนำค่าที่ได้ทั้งหมดมาหาค่าเฉลี่ย 4) ความหนาแน่นรวม (Bulk Density) ความหนาแน่นรวม (Bulk density) ของเมล็ดมะรุม หาได้โดยบรรจุเมล็ดในกระบอกตวงที่ทราบปริมาตรแน่นอน โดยปล่อยให้หล่นจากปากกรวย มาถึงปากกระบอกตวง ความยาวประมาณ 15 เซนติเมตร ปาดปากกระบอกตวงให้เรียบ แล้วนำไปชั่งน้ำหนัก หาความหนาแน่นรวมจาก 5) ความหนาแน่นเนื้อ (True Density) และปริมาตรต่อหนึ่งเมล็ด (Volume per seed) ความหนาแน่นจริง (True Density) เป็นสัดส่วนของจำนวนโมเลกุลของสารนั้น ในหนึ่งหน่วยปริมาตร ทำการหาทุกระดับความชื้น สำหรับส่วนเมล็ดใน ใช้วิธีการแทนที่ของเหลวในขวด Pycnometer ซึ่งเป็นขวดที่ทราบปริมาตรแน่นอน วิธีการคือ ชั่งน้ำหนักขวดเปล่า จึงหาค่าความหนาแน่นของของเหลว โดยการเติมของเหลวจนเต็มขวดชั่งน้ำหนักของเหลว โดยของเหลวที่ใช้คือเฮกเซน (Hexane) มีค่าความหนาแน่นเท่ากับ 0.6548 กรัมต่อลูกบาศก์เซนติเมตร ใส่เมล็ดมะรุมประมาณ 1 ใน 3 ของขนาดขวด แล้วชั่งน้ำหนักพร้อมขวด จากนั้นก็เติมเฮกเซนลงไปจนเต็มขวด นำไปชั่งน้ำหนัก ซึ่งปริมาตรเมล็ด คือ ปริมาตรของของเหลวที่ถูกแทนที่ด้วยเมล็ด ซึ่งคำนวณความหนาแน่นจริงได้จากสูตร ปริมาตรต่อหนึ่งเมล็ดสำหรับเมล็ดใน สำหรับส่วนทั้งเมล็ด ใช้การสมบัติเรื่องแรงลอยตัวของวัตถุบนของเหลว โดยการจุ่มเมล็ดในของเหลว โดยใช้เฮกเซน เหมือนวิธีแทนที่ของเหลวในขวด Pycnometer แต่ทำการวัดแรงได้จากการชั่งน้ำหนักของเหลวทั้งก่อนจุ่มเมล็ด และขณะจุ่มเมล็ด จะได้ซึ่งคำนวณความหนาแน่นจริงได้จากสูตรเดียวกับวิธีแทนที่ของเหลว และคำนวณปริมาตรต่อหนึ่งเมล็ดสำหรับทั้งเมล็ด 6) ความพรุน (Porosity) การหาความพรุน เป็นการหาความสัมพันธ์ของความหนาแน่นรวมกับความหนาแน่นจริง โดยใช้ความสัมพันธ์ 7) ความเร็วสุดท้าย (Terminal velocity) คัดเลือกเมล็ดมะรุมที่มีความสมบูรณ์ จำนวน 10 เมล็ด ของแต่ละความชื้น โดยการหาความเร็วสุดท้ายเป็นการวัดความเร็วลมสุดท้าย (จากพัดลม) ที่เมล็ดตัวอย่างจะสามารถลอยอยู่นิ่งที่ปากกระบอกของชุดอุปกรณ์ทดลอง 8) สัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) การหาค่าแรงเสียดทาน ของเมล็ดบนพื้นผิวต่างๆ ได้แก่ แผ่นไม้อัด แผ่นอะลูมิเนียม และแผ่นยาง เป็นการวางเมล็ดบนแผ่นพื้นแบบต่างๆ ดังรูปที่ 2 แล้วหาค่ามุมที่ให้เมล็ดตกลงมาบนพื้น โดยการหาได้จากความสัมพันธ์ รูปที่ 2 แสดงการหามุมแรงเสียดทานที่พื้นผิวต่างๆ 3. ผลการทดลอง จากการศึกษาเปรียบเทียบคุณสมบัติทางกายภาพของเมล็ดมะรุมที่ระดับความชื้นที่แตกต่างกัน 5 ระดับ 3.1 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) รูปที่ 3 ความสัมพันธ์ระหว่างความชื้น กับ GMD จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) ของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในจะเพิ่มขึ้นเมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผันตรง) เนื่องจาก เมล็ดมะรุมได้รับความชื้น จึงทำให้เมล็ดมีเส้นผ่านศูนย์กลางยาวขึ้น ที่สอดคล้องกับการทดลอง เมล็ด cowpea (Ibrahim Yalcin , 2006) และ เมล็ดกระวาน (Tamirat G., 2012) 3.2 ความเป็นทรงกลม (Sphericity) รูปที่ 4 ความสัมพันธ์ระหว่างความชื้นกับความเป็นทรงกลม จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าความเป็นทรงกลม (Sphericity) ของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในจะเพิ่มขึ้นเมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผันตรง) เนื่องจาก เมล็ดมะรุมได้รับความชื้น จึงทำให้เมล็ดมีรูปร่างที่กลมมากขึ้น ที่สอดคล้องกับการทดลองเมล็ด cowpea (Ibrahim Yalcin , 2006) และเมล็ดกระวาน (Tamirat G., 2012) 3.3 น้ำหนัก 100 เมล็ด (100 seed mass) รูปที่ 5 ความสัมพันธ์ระหว่างความชื้น กับ น้ำหนัก 100 เมล็ด จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าน้ำหนัก 100 เมล็ดของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในเพิ่มขึ้นเมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผันตรง) เนื่องจาก เมล็ดมะรุมได้รับความชื้น จึงทำให้เมล็ดมีน้ำหนักเพิ่มขึ้น ที่สอดคล้องกับการทดลองเมล็ด cowpea (Ibrahim Yalcin , 2006) เมล็ดกระวาน (Tamirat G., 2012) และเมล็ดมะรุม (Aviara N. A. , 2013) 3.4 พื้นที่ภาพฉาย (Projected area) รูปที่ 6 ความสัมพันธ์ระหว่างความชื้นกับพื้นที่ภาพฉาย จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าพื้นที่ภาพฉาย (Projected area) ของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในจะเพิ่มขึ้น เมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผันตรง) เนื่องจาก เมล็ดมะรุมได้รับความชื้น ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตเพิ่มขึ้น จึงทำให้เมล็ดมีพื้นที่ภาพฉายเพิ่มขึ้นที่สอดคล้องกับการทดลองเมล็ด cowpea (Ibrahim Yalcin , 2006) และ เมล็ดกระวาน (Tamirat G., 2012) 3.5 ความหนาแน่นรวม (Bulk density) รูปที่ 7 ความสัมพันธ์ระหว่างความชื้นกับความหนาแน่นรวม จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าความหนาแน่นรวม (Bulk density) ของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในจะลดลงเมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผกผัน) เนื่องจาก เมล็ดมะรุมได้รับความชื้น ดูดน้ำเข้าไปทำให้ความหนาแน่นรวมของเมล็ดลดลง ที่สอดคล้องกับการทดลองเมล็ด cowpea (Ibrahim Yalcin , 2006) และ เมล็ดกระวาน (Tamirat G., 2012) แต่ไม่สอดคล้องกับเมล็ดมะรุม (Aviara N. A. , 2013) อาจมีสาเหตุมาจากปริมาณน้ำมันที่อยู่ในเมล็ดมะรุม และสถานที่ปลูกมะรุมที่แตกต่างกัน 3.6 ความหนาแน่นเนื้อ (True density) รูปที่ 8 ความสัมพันธ์ระหว่างความชื้นกับความหนาแน่นเนื้อ จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าความหนาแน่นเนื้อ (True density) ของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในจะลดลงเมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผกผัน) เนื่องจาก เมล็ดมะรุมได้รับความชื้น ดูดน้ำเข้าไป ทำให้ความหนาแน่นเนื้อของเมล็ดลดลงที่สอดคล้องกับการทดลองเมล็ด cowpea (Ibrahim Yalcin , 2006) และ เมล็ดกระวาน (Tamirat G., 2012) แต่ไม่สอดคล้องกับเมล็ดมะรุม (Aviara N. A. , 2013) อาจมีสาเหตุมาจากปริมาณน้ำมันที่อยู่ในเมล็ดมะรุม และสถานที่ปลูกมะรุมที่แตกต่างกัน 3.7 ปริมาตรต่อหนึ่งเมล็ด (Volume per seed) รูปที่ 9 ความสัมพันธ์ระหว่างความชื้นกับปริมาตรต่อ หนึ่งเมล็ด จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าปริมาตรต่อหนึ่งเมล็ดของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในจะเพิ่มขึ้นเมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผันตรง) เนื่องจาก เมล็ดมะรุมมีขนาดและน้ำหนักเพิ่มขึ้น จึงทำให้ปริมาตรต่อหนึ่งเมล็ดเพิ่มขึ้น ที่สอดคล้องกับ การทดลองเมล็ด cowpea (Ibrahim Yalcin , 2006) และ เมล็ด caper (Dursun E. , 2005) 3.8 ความพรุน (Porosity) รูปที่ 10 ความสัมพันธ์ระหว่างความชื้นกับความพรุน จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าความพรุน (Porosity) ของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในจะลดลงเมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผกผัน) เนื่องจาก เมล็ดมะรุมได้รับความชื้น ดูดน้ำเข้าไปทำให้ความหนาแน่นเนื้อ และ ความหนาแน่นรวมของเมล็ดลดลง จึงทำให้ ความพรุนลดลง ที่สอดคล้องกับการทดลองเมล็ด cowpea (Ibrahim Yalcin , 2006) และ เมล็ดกระวาน (Tamirat G., 2012) แต่ไม่สอดคล้องกับเมล็ดมะรุม (Aviara N. A. , 2013) อาจมีสาเหตุมาจากปริมาณน้ำมันที่อยู่ในเมล็ดมะรุม และสถานที่ปลูกมะรุมที่แตกต่างกัน 3.9 ความเร็วสุดท้าย (Terminal velocity) รูปที่ 11 ความสัมพันธ์ระหว่างความชื้นกับความเร็วสุดท้าย จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าความเร็วสุดท้าย (Terminal velocity) ของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในจะเพิ่มขึ้น เมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผันตรง) เนื่องจาก เมล็ดมะรุมดูดน้ำเข้าไป น้ำหนักเมล็ดเพิ่มขึ้น ทำให้ความเร็วสุดท้ายของเมล็ดเพิ่มขึ้น ที่สอดคล้องกับการทดลองเมล็ด cowpea (Ibrahim Yalcin , 2006) และ เมล็ด caper (Dursun E. , 2005) 3.10 สัมประสิทธิ์ความเสียดทาน (Static coefficient friction) รูปที่ 12 ความสัมพันธ์ระหว่างความชื้นกับสัมประสิทธิ์ความเสียดทานสถิต (ส่วนทั้งเมล็ด) รูปที่ 13 ความสัมพันธ์ระหว่างความชื้นกับสัมประสิทธิ์ความเสียดทานสถิต (ส่วนเมล็ดใน) จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าค่าสัมประสิทธิ์ความเสียดทาน (Static coefficient friction) ของเมล็ดมะรุมส่วนทั้งเมล็ดและเมล็ดในจะเพิ่มขึ้นเมื่อเปอร์เซ็นต์ความชื้นเพิ่มขึ้น (แปรผันตรง) เนื่องจากเมล็ดมะรุมมีขนาดและน้ำหนักเพิ่มขึ้น จึงทำให้สัมประสิทธิ์ความเสียดทานสถิตเพิ่มขึ้น ที่สอดคล้องกับการทดลองเมล็ด cowpea (Ibrahim Yalcin , 2006) เมล็ดกระวาน (Tamirat G., 2012) และ เมล็ดมะรุม (Aviara N. A. , 2013) 4. สรุปผลการทดลอง 4.1 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต ความเป็นทรงกลม และ พื้นที่ภาพฉายของเมล็ดมะรุม มีความสัมพันธ์แบบ เป็นเส้นตรงที่เพิ่มขึ้นกับค่าความชื้นที่เพิ่มขึ้น โดย ส่วนทั้งเมล็ด มีการเพิ่มขึ้นที่มากกว่า ส่วนเมล็ดใน 4.2 มวล 100 เมล็ด และ ปริมาตร ของเมล็ดมะรุมมีความสัมพันธ์แบบเป็นเส้นตรงที่เพิ่มขึ้น กับค่าความชื้นที่เพิ่มขึ้น โดยส่วนทั้งเมล็ดมีการเพิ่มขึ้นที่มากกว่าส่วนเมล็ดใน 4.3 ความหนาแน่นรวม ความหนาแน่นเนื้อ และความพรุน มีความสัมพันธ์แบบเป็นเส้นตรงที่ลดลงกับค่าความชื้นที่เพิ่มขึ้น โดยส่วนทั้งเมล็ดมีการลดลงที่มากกว่าส่วนเมล็ดใน 4.4 ความเร็วสุดท้าย มีความสัมพันธ์แบบเส้นตรงที่เพิ่มขึ้น กับค่าความชื้นที่เพิ่มขึ้น โดย ส่วนทั้งเมล็ด มีการเพิ่มขึ้นที่มากกว่า ส่วนเมล็ดใน 4.5 สัมประสิทธิ์ความเสียดทานสถิต มีความสัมพันธ์แบบเป็นเส้นตรงที่เพิ่มขึ้น กับค่าความชื้นที่เพิ่มขึ้น ในทุกพื้นผิว โดยเรียงลำดับสัมประสิทธิ์ความเสียดทานสถิตจากมากไปน้อย ทั้งในส่วนทั้งเมล็ด และเมล็ดในได้เป็น ยาง ไม้ และอลูมิเนียม ตามลาดับ โดย - พื้นผิว ยาง และ อลูมิเนียม ส่วนทั้งเมล็ด มีการเพิ่มขึ้นที่มากกว่า ส่วนเมล็ดใน - พื้นผิว ไม้ ส่วนเมล็ดใน มีการเพิ่มขึ้นที่มากกว่า ส่วนทั้งเมล็ด อ้างอิง จันทนา ก่อนเก่า. (2539) . การพัฒนาน้ำมันพืชชนิดใหม่เพื่ออุตสาหกรรม. วิทยานิพนธ์ ปริญญาวิทยาศาสตร์มหาบัณฑิต. มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี. บริษัท สเปเชียลตี้ เนเชอรัล โปรดักส์ จำกัด (ออนไลน์) . สารสกัดเมล็ดมะรุม. วันที่สืบค้นข้อมูล 9 สิงหาคม 2555. เวปไซต์: http://www.snpthai.com/th/product/สารสกัดเมล็ดมะรุม ภิญญ์ทิตา มุ่งการดี. (2531) . การกำจัดความขุ่นของน้ำโดยใช้เมล็ดมะรุม. วิศวกรรมสาร มข. ปีที่ 15, ฉบับที่ 2 (ก.ค.-ธ.ค. 2531) , หน้า 39-43. วิกิพีเดีย สารานุกรมเสรี (ออนไลน์) . มะรุม. วันที่สืบค้นข้อมูล 9 สิงหาคม 2555. เวปไซต์: http://th.wikipedia.org/wiki/มะรุม สำนักงานข้อมูลสมุนไพร (ออนไลน์) . มะรุมพืชที่ทุกคนอยากรู้. วันที่สืบค้นข้อมูล 9 สิงหาคม 2555. จาก คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล เวปไซต์: http://www.medplant.mahidol.ac.th/document/moringa.asp Aviara N. A. (2013) . Moisture-dependent physical properties of Moringa oleifera seed relevant in bulk handling and mechanical processing. Industrial Crops and Products, volume 42, page 96-104. Maiduguri, Nigeria. Dursun E. (2005) . Some Physical Properties of Caper Seed. Biosystems Engineering , Volume 92, (2) , page 237-245. Ankara, Turkey. Gupta R.K., Das S.K. (1997) . Physical properties of sunflower seeds. Journal of Agricultural Engineering Research, volume66 (1) , page 1-8. Kharagpur, India. Karababa, E. (2006) . Physical properties of popcorn kernels. Journal of Food Engineering, volume 72 (1) ,page 100- 107.Mersin,Turkey. Sacilik, K. et al. (2003) . Some Physical Properties of Hemp Seed. Biosystems Engineering (2003) , volume 86 (2) , page 191-198. Ankara, Turkey. Tamirat Redae Gebreselassie. (2012) . Moisture dependent physical properties of cardamom (Elettaria Cardamomum M.) seed. CIGR Journal, volume 14 (1) , page 108-115. Adama, Ethiopia. Yalcın, I. (2006) . Physical properties of cowpea (Vigna sinensis L.) seed. Journal of Food Engineering 79, Adnan Menderes University, Aydın, Turkey.
สมัครสมาชิก

สนับสนุนโดย / Supported By

  • บริษ้ท มาเรล ฟู้ดส์ ซิสเท็ม จำกัด จัดจำหน่ายเครื่องจักรและอุปกรณ์การแปรรูปอาหาร เช่น ระบบการชั่งน้ำหนัก, การคัดขนาด, การแบ่ง, การตรวจสอบกระดูก และการประยุกต์ใช้ร่วมกับโปรแกรมคอมพิวเตอร์ พร้อมกับบริการ ออกแบบ ติดตั้ง กรรมวิธีการแปรรูปทั้งกระบวนการ สำหรับ ผลิตภัณฑ์ ปลา เนื้อ และ สัตว์ปีก โดยมีวิศวกรบริการและ สำนักงานตั้งอยู่ที่กรุงเทพ มาเรล เป็นผู้ให้บริการชั้นนำระดับโลกของอุปกรณ์การแปรรูปอาหารที่ทันสมัย​​ครบวงจรทั้งระบบ สำหรับอุตสาหกรรม ปลา กุ้ง เนื้อ และสัตว์ปีก ต่างๆ เครื่องแปรรูปผลิตภัณฑ์สัตว์ปีก Stork และ Townsend จาก Marel อยู่ในกลุ่มเครื่องที่เป็นที่ยอมรับมากที่สุดในอุตสาหกรรม พร้อมกันนี้ สามารถบริการครบวงจรตั้งแต่ต้นสายการผลิตจนเสร็จเป็นสินค้า เพื่ออำนวยความสะดวกให้กับทุกความต้องการของลูกค้า ด้วยสำนักงานและบริษัทสาขามากกว่า 30 ประเทศ และ 100 เครือข่ายตัวแทนและผู้จัดจำหน่ายทั่วโลก ที่พร้อมทำงานเคียงข้างลูกค้าเพื่อขยายขอบเขตผลการแปรรูปอาหาร Marel Food Systems Limited. We are supply weighing, grading, portioning, bone detection and software applications as well as complete turn-key processing solutions for fish, meat and poultry. We have service engineer and office in Bangkok. Marel is the leading global provider of advanced food processing equipment, systems and services to the fish, meat, and poultry industries. Our brands - Marel, Stork Poultry Processing and Townsend Further Processing - are among the most respected in the industry. Together, we offer the convenience of a single source to meet our customers' every need. With offices and subsidiaries in over 30 countries and a global network of 100 agents and distributors, we work side-by-side with our customers to extend the boundaries of food processing performance.
  • We are well known for reliable, easy-to-use coding and marking solutions which have a low total cost of ownership, as well as for our strong customer service ethos. Developing new products and a continuous programme of improving existing coding and marking solutions also remain central to Linx's strategy. Coding and marking machines from Linx Printing Technologies Ltd provide a comprehensive solution for date and batch coding of products and packaging across manufacturing industries via a global network of distributors. In the industrial inkjet printer arena, our reputation is second to none. Our continuous ink jet printers, laser coders, outer case coders and thermal transfer overprinters are used on production lines in many manufacturing sectors, including the food, beverage, pharmaceutical, cosmetics, automotive and electronic industries, where product identification codes, batch numbers, use by dates and barcodes are needed. PTasia, THAILAND With more than 3,700 coding, marking, barcode, label applicator, filling, packing and sealing systems installed in THAILAND market. Our range is includes systems across a wide range of technologies. To select the most appropriate technology to suit our customers. An excellent customer service reputation, together with a reputation for reliability that sets standards in the industry, rounds off the PTAsia offering and provides customers with efficient and economical solutions of the high quality. Satisfyingcustomers inTHAILAND for 10 years Our 1,313 customers benefit from our many years of experience in the field, with our successful business model of continuous improvement. Our technical and service associates specialise in providing individual advice and finding the most efficient and practical solution to every requirment. PTAsia extends its expertise to customers in the food, beverage, chemical, personal care, pharmaceutical, medical device, electronics, aerospace, military, automotive, and other industrial markets.
  • วิสัยทัศน์ของบริษัท คือ การอยู่ในระดับแนวหน้า "ฟอร์ฟร้อนท์" ของเทคโนโลยีประเภทต่างๆ และนำเทคโนโลยีนั้นๆ มาปรับใช้ให้เหมาะสมกับอุตสาหกรรมและกระบวนการผลิตในประเทศไทย เพื่อผลประโยชน์สูงสุดของลูกค้า บริษัท ฟอร์ฟร้อนท์ ฟู้ดเทค จำกัด เชื่อมั่นและยึดมั่นในอุดมการณ์การดำเนินธุรกิจ กล่าวคือ จำหน่าย สินค้าและให้บริการที่มีคุณภาพสูง ซึ่งเหมาะสมกับความต้องการของลูกค้า ด้วยความซื่อสัตย์และความตรงต่อเวลา เพื่อการทำธุรกิจที่ประสบความสำเร็จร่วมกันระยะยาว Our vision is to be in the "forefront" of technology in its field and suitably apply the technology to industries and production in Thailand for customers' utmost benefits. Forefront Foodtech Co., Ltd. strongly believes in and is committed to our own business philosophy which is to supply high quality products and service appropriately to each customer's requirements with honesty and punctuality in order to maintain long term win-win business relationship. Forefront Foodtech Co., Ltd. is the agent company that supplies machinery and system, install and provide after sales service as well as spare parts. Our products are: Heinrich Frey Maschinenbau Gmbh, Germany: manufacturer of vacuum stuffers and machinery for convenient food Kronen GmbH, Germany: manufacturer of machinery for vegetable and fruits from washing to packing Nock Fleischerei Maschinenbau GmbH, Germany: manufacturer of skinning machines, membrane skinning machine, slicers and scale ice makers K + G Wetter GmbH, Germany: manufacturer of grinders and bowl cutters Ness & Co. GmbH, Germany: manufacturer of smoke chambers, both stand alone and continuous units Dorit DFT GmbH, Germany: manufacturer of tumblers and injectors Maschinenfabrik Leonhardt GmbH, Germany: manufacturer of dosing and filling equipment