News and Articles

วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่

วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่


หมวดหมู่: ผักและผลไม้ [วัตถุดิบ และ ส่วนผสมอาหาร]
วันที่: 21 มกราคม พ.ศ. 2555

วิจัยผัก-สมุนไพรไทยคุณค่าเพียบ พบสารต่อต้านอนุมูลอิสระ ป้องกันมะเร็ง-ช่วยชะลอแก่

วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่

นพ.สมยศ ดีรัศมี อธิบดีกรมอนามัย กล่าวว่า จากการศึกษาผักพื้นบ้านในปี 2554 กรมอนามัยได้เก็บตัวอย่างผักสมุนไพร พื้นบ้าน รวม 45 ชนิด จาก 4 ภาค ประกอบด้วย ภาคกลาง 12 ชนิด ภาคเหนือ 6 ชนิด ภาคตะวันออกเฉียงเหนือ 5 ชนิด และภาคใต้ 22 ชนิด โดยศึกษาปริมาณสารอาหารที่มีความสำคัญต่อร่างกาย 9 ชนิด ได้แก่ 1.พลังงาน 2.โปรตีน 3.ไขมัน 4.คาร์โบไฮเดรท 5.เบต้าแคโรทีน 6.วิตามินซี (vitamin C) 7.ใยอาหาร 8.ธาตุเหล็ก และ 9.แคลเซียม ทั้งนี้ ผลการศึกษาเมื่อเปรียบเทียบน้ำหนักทุก 100 กรัมเท่ากัน

พบผักพื้นบ้านของไทยทุกชนิดให้พลังงาน โปรตีน ไขมันและคาร์โบไฮเดรท น้อยมาก จึงกล่าวได้ว่าผักเหล่านี้กินแล้วไม่ทำให้อ้วน ผักพื้นบ้านส่วนใหญ่มีคุณค่าสร้างเสริมสุขภาพ ( functional food) เพราะมีฤทธิ์ต้านอนุมูลอิสระ (antioxidant) ซึ่งอนุมูลอิสระนี้เป็นตัวการสำคัญที่ทำให้เกิดปัญหาทางสุขภาพ เช่น ภาวะความจำเสื่อมหรืออัลไซเมอร์ ระบบภูมิคุ้มกันลดลง และโรคมะเร็ง เป็นต้น

วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่ผักที่มีแคลเซียมสูง

สำหรับผักที่มีแคลเซียมสูงสุด 10 อันดับ

วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่

ผักแพว

  • หมาน้อยมี 423 มิลลิกรัม
  • ผักแพวมี 390 มิลลิกรัม
  • สะเดา (ยอด) มี 384 มิลลิกรัม
  • กระเพราขาวมี 221 มิลลิกรัม
  • ใบขี้เหล็กมี 156 มิลลิกรัม
  • ใบเหลียงมี 151 มิลลิกรัม
  • ยอดมะยมมี 147 มิลลิกรัม
  • ผักแส้วมี 142 มิลลิกรัม
  • ผักฮ้วน (ดอก) มี 113 มิลลิกรัม และ
  • ผักแมะมี 112 มิลลิกรัม
  • โดยแคลเซียมช่วยป้องกันโรคกระดูกพรุน ช่วยในการทำงานของระบบประสาท กล้ามเนื้อ หัวใจและหลอดเลือด นอกจากนี้ยังช่วยในการแข็งตัวของเลือด และควบคุมการหลั่งของฮอร์โมนบางชนิด

    วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่ผักที่มีธาตุเหล็กสูง

    ผักที่มีธาตุเหล็กสูงสุด 5 อันดับแรก

  • ใบกระเพราแดงมี 15 มิลลิกรัม
  • ผักเม็กมี 12 มิลลิกรัม
  • ขี้เหล็ก (ใบ) มี 6 มิลลิกรัม
  • สะเดา (ใบ) มี 5 มิลลิกรัม
  • ผักแพวมี 3 มิลลิกรัม
  • ธาตุเหล็ก เป็นองค์ประกอบที่สำคัญในการสร้างฮีโมโกลบินในเม็ดเลือดแดง เพื่อนำอ็อกซิเจนไปเลี้ยงเซลล์ต่างๆในร่างกาย และมีบทบาทในด้านพัฒนาการและการเรียนรู้ สมรรถภาพในการทำงาน สร้างภูมิต้านทานโรค และเกี่ยวข้องกับการเจริญพันธุ์ ธาตุเหล็กจะถูกดูดซึมได้ดีต้องรับประทานอาหารที่มีวิตามินซีควบคู่ด้วย

    วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่ผักที่มีใยอาหารสูง

    ผักที่มีใยอาหารสูง 10 อันดับ มีดังนี้

  • ยอดมันปู มี16.7 กรัม
  • ยอดหมุย มี 14.2 กรัม
  • สะเดา (ยอด) มี 12.2 กรัม
  • เนียงรอก มี 11.2 กรัม
  • ดอกขี้เหล็ก 9.8 กรัม
  • ผักแพว 9.7กรัม
  • ยอดมะยม 9.4 กรัม
  • ใบเหลียง 8.8 กรัม
  • หมากหมก 7.7 กรัม 
  • ผักเม่า มี 7.1 กรัม
  • ซึ่งใยอาหารในผักทำให้ร่างกายขับถ่ายอุจจาระได้เร็วขึ้น ท้องไม่ผูก ช่วยป้องกันโรคมะเร็งลำไส้ใหญ่ และทำให้การดูดซึมน้ำตาลเข้าสู่กระแสเลือดช้าลง ส่งผลให้ลดระดับการใช้อินซูลิน นอกจากนี้ ใยอาหารบางชนิด ยังช่วยลดระดับคอเลสเตอรอล ซึ่งเป็นปัจจัยเสี่ยงต่อการเกิดโรคหัวใจและหลอดเลือด วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่ผักที่มีเบต้าแคโรทีนสูง

    ผักที่มีเบต้าแคโรทีน สูง 10 อันดับ

  • ยอดลำปะสีมี 15,157 ไมโครกรัม
  • ผักแมะมี 9,102 ไมโครกรัม
  • ยอดกะทกรกมี 8,498 ไมโครกรัม
  • ใบกระเพราแดงมี7,875 ไมโครกรัม
  • ยี่หร่ามี 7,408 ไมโครกรัม
  • หมาน้อยมี 6,577 ไมโครกรัม
  • ผักเจียงดามี 5,905 ไมโครกรัม
  • ยอดมันปูมี 5,646 ไมโครกรัม
  • ยอดหมุยมี 5,390 ไมโครกรัม และ
  • ผักหวานมี 4,823 ไมโครกรัม
  • วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่ผักที่มีวิตามินซีสูง

    ผักที่มีวิตามินซี (vitamin C) สูง 10 อันดับ

    วิจัยผัก ไทยคุณค่าเพียบ สารต้านอนุมูลอิสระ มะเร็ง ชะลอแก่

  • ขี้เหล็ก (ดอก) มี 484มิลลิกรัม
  • ผักฮ้วน (ดอก) มี 472 มิลลิกรัม
  • ผักฮ้วน (ยอด) มี 351 มิลลิกรัม
  • ฝักมะรุมมี 262 มิลลิกรัม
  • สะเดา (ยอด) มี 194 มิลลิกรัม
  • ผักเจียงดามี 153 มิลลิกรัม
  • ดอกสะเดามี 123 มิลลิกรัม
  • ผักแพวมี 115 มิลลิกรัม
  • ผักหวานมี 107 มิลลิกรัม และ
  • ยอดกะทกรกมี 86 มิลลิกรัม
  • โดยทั้งเบต้าแคโรทีน และวิตามินซี เป็นสารอาหารที่มีฤทธิ์ต้านอนุมูลอิสระ (antioxidant) ช่วยป้องกันโรคมะเร็ง โรคหัวใจ ลดการอักเสบ เสริมสร้างภูมิต้านทานโรคในร่างกาย ทำให้ร่างกายแก่ชราช้าลงด้วย

    ที่มา หนังสือพิมพ์แนวหน้า



    ข่าวและบทความที่เกี่ยวข้อง
    บทที่ 1 ที่มาและความสำคัญ
    บทที่ 1 บทนำ 1.1 ที่มาและความสำคัญ อุตสาหกรรมแปรรูปผลิตภัณฑ์จากปลาทูน่า เป็นอุตสาหกรรมอาหารที่มีความสำคัญต่อเศรษฐกิจของประเทศไทย ผลิตภัณฑ์แปรรูปจากปลาทูน่าที่สำคัญ คือ ปลาทูน่ากระป๋องและปรุงแต่ง ซึ่งประเทศไทยเป็นประเทศผู้ส่งออกผลิตภัณฑ์ดังกล่าวเป็นอันดับหนึ่งของโลก (ศูนย์วิจัยกสิกรไทย, 2553) โดยมีสัดส่วนส่งออกร้อยละ 90 ของผลิตภัณฑ์ที่ผลิตได้ มูลค่าการส่งออกสูงถึง 51,942.3 ล้านบาท ในปี 2553 และเพิ่มขึ้นเป็น 61,461.7 ล้านบาทในปี 2554 (กระทรวงพาณิชย์, 2555) วัตถุดิบหลักเพื่อแปรรูปเป็นผลิตภัณฑ์ทูน่ากระป๋อง คือปลาทูน่าสดแช่เยือกแข็ง ซึ่งพึ่งพาการนำเข้าวัตถุดิบหลัก ในสัดส่วนมากกว่าร้อยละ 80 ของความต้องการใช้ในประเทศ เนื่องจากการประมงทูน่าของไทยยังไม่สามารถพัฒนาขึ้นมารองรับความต้องการใช้วัตถุดิบได้อย่างเพียงพอ จากข้อมูลการนำเข้าปลาทูน่าสดแช่เยือกแข็งของกระทรวงพาณิชย์ในปี 2554 มีมูลค่าสูงถึง 39,519.02 ล้านบาท ทั้งในปัจจุบันปลาทูน่ามีปริมาณในทะเลลดลง มีการกำหนดโควต้าการจับปลาทูน่าในแต่ละปีและราคาปลาทูน่ามีแนวโน้มที่สูงขึ้น ทำให้ต้นทุนในการผลิตสูงขึ้นและผู้ผลิตยังไม่สามารถต่อรองคุณสมบัติที่เหมาะสมของปลาทูน่าต่อการผลิตได้ ปลาทูน่ากระป๋องเป็นผลิตภัณฑ์อาหารเพื่อสุขภาพ เพราะเนื้อปลาเป็นอาหารที่ย่อยง่าย มีกรดอะมิโนที่จำเป็น (Essential amino acid) ครบทุกชนิดและยังมีกรดไขมันโอเมก้า 3 (Omega-3 fatty acid) เช่น DHA ซึ่งเป็นกรดไขมันที่จำเป็นต่อร่างกาย (Essential fatty acid) บริโภคได้ทุกเพศทุกวัย และมีการบริโภคกันอย่างกว้างขวางทั่วโลก ปัญหาสำคัญที่มีผลกระทบต่อตลาดปลาทูน่าแปรรูปกระป๋องของไทย คือ ผลิตภัณฑ์ปลาทูน่ามีปริมาณเกลือสูง ซึ่งอาจส่งผลร้ายต่อสุขภาพผู้บริโภค โดยเฉพาะผู้ป่วยโรคความดันโลหิตสูง โรคหัวใจและหลอดเลือด โรคหลอดเลือดสมอง เป็นต้น เพราะหากร่างกายรับเกลือมากเกินไปจะทำให้ความดันโลหิตสูงขึ้นและหัวใจต้องทำงานหนักมากขึ้น ปริมาณเกลือหรือโซเดียมคลอไรด์ 6 กรัมจะมีโซเดียมประมาณ 2,400 มิลลิกรัม ซึ่งเป็นปริมาณสูงสุดที่ควรได้รับและไม่ก่อให้เกิดอันตราย ปัญหาจากผลิตภัณฑ์ปลาทูน่าที่มีปริมาณเกลือสูงนี้มีผลต่อตลาดส่งออก การตัดสินใจซื้อของกลุ่มผู้บริโภคที่รักสุขภาพซึ่งเพิ่มจำนวนมากขึ้นในปัจจุบัน ปริมาณเกลือในผลิตภัณฑ์จากปลาทูน่าเกิดขึ้นจากกระบวนการการแช่เยือกแข็งแบบจุ่ม (Immersion freezing) เพื่อการรักษาความสดของปลา กระบวนการรักษาความสดของปลาทูน่าในเรือประมงทำโดยใช้น้ำไบรน์ (Brine) หรือน้ำเกลือเข้มข้น น้ำไบรน์มีอัตราส่วนน้ำ 100 กิโลกรัมต่อเกลือ 29 กิโลกรัม สามารถทำให้อุณหภูมิลดต่ำลงถึง -17 ถึง -21.2 องศาเซลเซียส และยังคงสถานะเป็นของเหลว การแช่เยือกแข็งจะแช่ปลาทูน่าที่จับได้ในถังพัก ให้ปลาทุกตัวลงไปจมอยู่ใต้น้ำไบรน์ 1 คืน เพื่อทำให้อุณหภูมิของปลาทูน่าเท่ากัน ให้อุณหภูมิทั่วทั้งตัวปลาได้ -10 องศาเซลเซียส คงอุณหภูมิที่ -10 องศาเซลเซียส เป็นเวลา 3 วัน การแช่ในน้ำเกลือทำให้ปลาแช่เยือกแข็งอย่างรวดเร็ว แต่ส่งผลเสียคือ ทำให้เกลือแพร่ (Diffusion) เข้าไปในเนื้อปลา จากการสำรวจและสอบถามผู้ประกอบการแปรรูปปลาทูน่าแช่แข็ง บริษัท พัทยาฟู้ดอินดรัสตรี จำกัด พบปัญหาปลาทูน่าแช่แข็งมีปริมาณเกลือสูงเกินกำหนด จาก 1 ใน 3 กลุ่มสินค้า และจากการสุ่มตรวจตัวอย่างจากกลุ่มสินค้าในกระบวนการผลิตปลาทูน่าแปรรูปจากปลาทูน่าแช่แข็ง 3 ขนาดที่พบปัญหาบ่อย ได้แก่ ขนาดน้ำหนักต่ำกว่า 1.4 กิโลกรัม น้ำหนักระหว่าง 1.4 - 1.8 กิโลกรัม และ น้ำหนักระหว่าง 1.8 - 2.5 กิโลกรัม พบปริมาณเกลือในเนื้อปลาทูน่าแช่แข็งก่อนการละลายเฉลี่ย ปริมาณเกลือในเนื้อปลาทูน่าหลังการละลายเฉลี่ย และปริมาณเกลือที่เหลือในผลิตภัณฑ์ปลาทูน่าก่อนการแปรรูปเฉลี่ยมีปริมาณเกินกว่าผู้ประกอบการกำหนด และจากการตรวจวัดปริมาณเกลือสรุปได้ว่าในกระบวนการละลายสามารถลดปริมาณเกลือในเนื้อปลาทูน่าได้มากกว่าขั้นตอนอื่นๆ โดยคาดว่าการละลายด้วยน้ำ น้ำเป็นตัวทำละลายที่ดีเนื่องจากคุณสมบัติความมีขั้วในโมเลกุลของน้ำอีกทั้งเกลือ (NaCl) เป็นสารประกอบไอออนิกที่ละลายน้ำได้ และเกิดกระบวนการแพร่โดยเกลือในตัวปลาที่มีความเข้มข้นสูงกว่าไปยังน้ำที่ใช้ในการละลายซึ่งมีความเข้มข้นต่ำกว่า โดยจากการสำรวจงานวิจัยที่ผ่านมาไม่พบว่ามีงานวิจัยที่ศึกษาการลดปริมาณเกลือในปลาทูน่าระหว่างขั้นตอนการละลายด้วยน้ำ ซึ่งถ้าลดปริมาณเกลือลงได้ต่ำกว่าร้อยละ 1.2 จะส่งผลต่อการตลาดและภาพลักษณ์ดีที่ของผลิตภัณฑ์ปลาทูน่ากระป๋องที่เป็นอาหารเพื่อสุขภาพในระดับอุตสาหกรรม 1.2 วัตถุประสงค์ของโครงงาน เพื่อศึกษาผลของละลาย (Thawing) ในสภาวะน้ำนิ่ง (Natural convection) น้ำวน (Force convection) และน้ำอลวน (Chaotic convection) ต่อการลดปริมาณเกลือในปลาทูน่าหลังการละลาย 1.3 ขอบเขตการศึกษา 1.3.1 ใช้ปลาทูน่าพันธุ์ท้องแถบ (Skipjack tuna) จากแถบมหาสมุทรแปซิฟิก ซึ่งเป็นปลาแช่ เยือกแข็ง (Frozen fish) มีน้ำหนักระหว่าง 1.4-2.0 กิโลกรัม 1.3.2 ปลาทูน่าที่ใช้ มีปริมาณเกลือก่อนละลายมากกว่าร้อยละ 1.5 ควบคุมการละลายปลาทู น่า จนอุณหภูมิเนื้อติดกระดูก (Back bone) อยู่ระหว่าง 0 ถึง 2 องศาเซลเซียส มีเป้าหมายให้ ปริมาณเกลือหลังการละลายต่ำกว่าร้อยละ 1.2 1.4 ผลที่คาดว่าจะได้รับ 1.4.1 ทราบผลของวิธีการละลายที่มีผลต่อการลดลงของปริมาณเกลือและคุณภาพของปลาทูน่า หลังละลาย 1.4.2 สามารถนำข้อมูลที่ได้ไปใช้ในการปรับปรุงและพัฒนาอุปกรณ์ที่ช่วยให้ขั้นตอนการละลาย ปลาทูน่าแช่แข็งสามารถลดปริมาณเกลือได้อย่างมีประสิทธิภาพมากที่สุด ซึ่งส่งผลดีต่อการ ตลาดของปลาทูน่ากระป๋อง จเร วงษ์ผึ่ง ววรมน อนันต์ วสันต์ อินทร์ตา เอกสารอ้างอิง 1. กรมส่งเสริมการส่งออก กระทรวงพาณิชย์. 2554. "Major destination Canneds tunas." [ออนไลน์]. ปรากฎ www.ops3.moc.go.th/menucomen/export_market/report.asp 2. ศูนย์วิจัยกสิกรไทย จำกัด. 2553. "การส่งออกปลาทูน่ากระป๋องและปรุงแต่ง...ครึ่งหลังปี'53 มีแนวโน้มเติบโตต่อเนื่อง." [ออนไลน์]. ปรากฎ www.positioningmag.com/prnews.aspx?id=88290
    ฉลากโภชนาการ (nutrition label)
    อาหารประเภทใดบ้างที่ต้องแสดงฉลากโภชนาการ ข้อมูลบังคับ ปริมาณพลังงานทั้งหมด ปริมาณพลังงานที่ได้จากไขมัน คาร์โบไฮเดรท ไขมัน โปรตีน (protein) วิตามินเอ (vitamin A) บี1 (vitamin B1) บี2 แคลเซียม เหล็ก โคเลสเตอรอล (cholesterol) โซเดียม ไขมันอิ่มตัวและน้ำตาล (ไม่มากเกิน) ใยอาหาร สารอาหารที่มีการเติมลงในอาหาร สารอาหารที่กล่าวอ้าง ข้อมูลที่ไม่บังคับ นอกจากที่กำหนดในข้อมูลบังคับก็สามารถใส่ในฉลากได้ เช่น วิตามิน เกลือแร่ แต่ต้องระบุต่อท้ายจากเหล็ก และเรียงจากมากไปหาน้อย 1. "หนึ่งหน่วยบริโภค" หมายถึง ปริมาณอาหารที่ผู้ผลิต แนะนำให้ผู้บริโภครับประทานต่อครั้ง หรือ หมายถึง กินครั้งละเท่าไรนั่นเอง ซึ่งได้มาจากค่าเฉลี่ยที่รับประทานของคนไทย เมื่อรับประทานในปริมาณเท่านี้แล้ว จะได้รับสารอาหารตามที่ระบุไว้บนฉลาก หนึ่งหน่วยบริโภค จะแสดงให้เห็นทั้งปริมาณที่เป็นหน่วยครัวเรือน เช่น กระป๋อง ชิ้น ถ้วย แก้ว เป็นต้น ตามด้วยน้ำหนัก ...กรัม หรือปริมาตร...มิลลิลิตร ในระบบเมตริก ตัวอย่างเช่น อาหารที่มีการกล่าวอ้างหรือใช้คุณค่าทางโภชนาการเพื่อส่งเสริมการขายต้องแสดงฉลากโภชนาการ ดังต่อไปนี้ 1. อาหารที่มีการแสดงข้อมูลชนิดสารอาหาร ปริมาณสารอาหาร หน้าที่ของสารอาหาร เช่น มีไขมัน 0% มีแคลเซียมสูงเป็นต้น 2. อาหารที่มีการใช้คุณค่าทางอาหารหรือทางโภชนาการในการส่งเสริมการขาย เช่น เป็นผลิตภัณฑ์ เพื่อบำรุงสุขภาพ สดใส แข็งแรง แต่ห้ามแสดงสรรพคุณในลักษณะป้องกันหรือรักษาโรค เช่น ลดความอ้วน ป้องกันมะเร็ง เป็นต้น 3. อาหารที่มุ่งจะใช้ในกลุ่มผู้บริโภคเฉพาะกลุ่มเพื่อการส่งเสริมการขาย เช่น กลุ่มวัยเรียน กลุ่มผู้บริหาร กลุ่มผู้สูงอายุ เป็นต้น 4. อาหารที่สำนักงานคณะกรรมการอาหารและยาประกาศกำหนดให้ต้องแสดงฉลาก โภชนาการ เนื่องจากพิจารณาแล้วว่าเป็นอาหารที่ก่อให้เกิดความเข้าใจผิดในด้านคุณค่า คุณประโยชน์ทางโภชนาการอย่างแพร่หลาย ดังนั้น อาหารในท้องตลาดที่ไม่มีการกล่าวอ้างหรือส่งเสริมการขายในลักษณะดังกล่าว ไม่ต้องแสดงฉลากโภชนาการ ลิ้นจี่ในน้ำเชื่อมเข้มข้น บรรจุกระป๋อง จะต้องระบุปริมาณ ที่เห็นง่าย และน้ำหนัก หรือปริมาตร ดังนี้ "หนึ่งหน่วยบริโภค : 4 ลูก (140 กรัม รวมน้ำเชื่อม) " เครื่องดื่มอัดลม จะต้องระบุปริมาณที่เห็นง่าย และ น้ำหนัก หรือปริมาตร ดังนี้ "หนึ่งหน่วยบริโภค : 1 กระป๋อง (325 มิลลิลิตร) " ประโยชน์ของฉลากโภชนาการ 1. เลือกซื้ออาหารและเลือกบริโภคให้เหมาะสมกับความต้องการ หรือภาวะทางโภชนาการของตนได้ เช่น ผู้ที่มีโคเลสเตอรอลสูง ก็เลือกอาหาร ที่ระบุว่ามีโคเลสเตอรอลต่ำ หรือ ผู้ที่เป็นโรคไตก็เลือกอาหารมีโซเดียมต่ำ 2. เปรียบเทียบเลือกซื้อผลิตภัณฑ์อาหารชนิดเดียวกัน โดยเลือก ที่มีคุณค่าทางโภชนาการที่ดีกว่าได้ 3. ในอนาคต เมื่อผู้บริโภคสนใจข้อมูลโภชนาการของอาหาร ผู้ผลิตก็จะแข่งขันกันผลิตอาหารที่มีคุณค่าทางโภชนาการสูงกว่า แทนการแข่งขัน กันในเรื่องหีบห่อ สี หรือสิ่งจูงใจภายนอกอื่น ๆ ฉลากโภชนาการ มีข้อมูลที่เป็นประโยชน์ทำให้สามารถเลือกบริโภคอาหารสำเร็จรูป/กึ่งสำเร็จรูปที่มีปริมาณคุณค่าสารอาหารตรงตามความต้องการของร่างกายได้อย่างเหมาะสม ดังนั้น ผู้บริโภคจึงไม่ควรละเลยหรือมองข้ามฉลากโภชนาการ การอ่านข้อมูลโภชนาการบนฉลากผลิตภัณฑ์อาหาร ก่อนการตัดสินใจเลือกซื้อ จะทำให้ซื้อผลิตภัณฑ์อาหารตามที่ต้องการได้
    ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดถั่วแดงหลวง
    ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดถั่วแดงหลวง (Effect of moisture content on some physical properties of Red Kidney Bean) สาขาวิชาวิศวกรรมอาหารคณะวิศวกรรมศาสตร์สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง จรัสแสงเหลี่ยมบางวารุณีจำเริญพูน วิจิตราต่อตรงนิสาร วสันต์ อินทร์ตา บทคัดย่อ จากการศึกษาสมบัติทางกายภาพของเมล็ดถั่วแดงหลวง (Red Kiney Bean) พิจารณาจากความชื้นฐานแห้งในช่วง 4-16 % เพิ่มขึ้นช่วงละ 3% มีทั้งหมด 5 ระดับความชื้นพบว่าค่าขนาดความกว้างความยาวความหนาและความเป็นทรงกลม (Sphericity) โดยเฉลี่ยมีค่าอยู่ที่ 8.61 มิลลิเมตร , 16.93 มิลลิเมตร, 6.40 มิลลิเมตรและ 57.72 มิลลิเมตรตามลำดับค่าน้ำหนัก100 เมล็ดมีค่าอยู่ในช่วง 52-66 กรัมความหนาแน่นเนื้ออยู่ในช่วง 1.0 - 1.4 % ความหนาแน่นรวม 0.70 - 0.80 % พื้นที่ภาพฉายอยู่ในช่วง 1.10 - 1.35 ตารางเซนติเมตรรวมถึงความเร็วลมสุดท้ายโดยเฉลี่ยคือ18.76 เมตร/วินาทีจะได้ว่าเมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มเพิ่มขึ้นเชิงเส้นแบบแปรผันตรงในทางกลับกันค่าความหนาแน่นเนื้อ (Bulk density) เมื่อค่าความชื้นเพิ่มขึ้นกราฟมีแนวโน้มจะลดลงเชิงเส้นแบบแปรผกผันและจากการหาค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ (Static coefficient of friction ) บนพื้นผิวไม้อลูมิเนียมและพื้นยางจะได้ค่าอยู่ในช่วง 16 -23 , 19-25 และ 25 - 31 ตามลาดับพบว่าค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ระหว่างเมล็ดถั่วแดงหลวงกับพื้นยางจะมีค่ามากที่สุดรองลงมาคืออะลูมิเนียมและพื้นไม้มีค่าสัมประสิทธิ์แรงเสียดทานสถิตน้อยที่สุด 1.บทนำ ถั่วแดงหลวง (Red kidney bean) มีชื่อวิทยาศาสตร์Phaseolus vulgarisL.เป็นพืชตระกูลถั่วเมล็ดแห้งที่มีความสำคัญทางเศรษฐกิจที่สำคัญของเกษตรกรบนพื้นที่สูงจะเพาะปลูกถั่วแดงหลวงเป็นรายได้หลัก และใช้ปลูกเป็นพืชเสริมหมุนเวียนกับพืชไร่ชนิดอื่นๆ เพื่อเพิ่มความอุดมสมบูรณ์ของดินและลดปัญหาการสะสมโรค-แมลง โดยมีวัตถุประสงค์เพื่อให้เกษตรกรปลูกเป็นพืชรายได้ทดแทนฝิ่นและใช้รับประทานเป็นแหล่งอาหารโปรตีนในครัวเรือนพื้นที่เพาะปลูกที่เหมาะสมควรเป็นพื้นที่ราบ ไม่ควรมีความชันมาก ดินควรเป็นดินร่วนเหนียวที่เก็บรักษาความชื้นดีและมีความอุดมสมบูรณ์ดี มีความเป็นกรด-ด่าง ประมาณ 5.5-6.5 ในแต่ละฝักของถั่วแดงหลวงจะมีเมล็ดอยู่ 4-5เมล็ดต่อฝัก นอกจากนี้ยังถั่วแดงหลวงยังมีสารอาหารต่างๆมากมาย คือฟอสฟอรัส แคลเซียม โปรตีนวิตามินแร่ธาตุเส้นใยอาหารและมีคุณค่าทางโภชนาการสูง ในถั่วแดงจำนวน 100 กรัม จะให้พลังงานทั้งหมด 332 kCalโปรตีน25 กรัม คาร์โบไฮเดรต 58 กรัมใยอาหาร 24.9 กรัม น้ำตาลน้อยกว่า 2.4 กรัม โซเดียม 10 มิลลิกรัม และวิตามินแร่ธาตุ ได้แก่ วิตามินเอและบี 0.1% วิตามินบี27.6% วิตามินบี1114% วิตามินซี 4.1% แคลเซียม 8.9% และธาตุเหล็ก 31.5% ทั้งนี้จะช่วยให้ระบบย่อยอาหารทำงานได้ดี ขจัดคอเรสเตอรอลส่วนเกินที่เป็นสาเหตุของโรคหัวใจ ป้องกันโรคความดันโลหิตสูงและเพิ่มพูนแบคทีเรียที่มีประโยชน์ต่อร่างกาย รวมทั้งยังช่วยบำรุงประสาทช่วยขับพิษขับของเหลวในร่างกายบำบัดอาการเหน็บชาบรรเทาอาการปวดตามข้อกระดูก ทั้งนี้ถั่วแดงหลวงยังมีฤทธิ์เป็นกลาง คือไม่ร้อนไม่เย็น แต่ก็ยังสามารถช่วยขับร้อนได้นอกจากนี้ถั่วแดงหลวงยังใช้ประโยชน์ในด้านใช้เป็นอาหารลดความอ้วนและเป็นอาหารสำหรับผู้ป่วยที่เป็นโรคเบาหวานได้ดีอีกด้วย วัตถุประสงค์เพื่อวัดขนาดของถั่วแดงหลวง (วัดความกว้าง,ความยาว,ความหนา) การเตรียมความชื้นการหาปริมาตรเมล็ดพืชการหาความหนาแน่นเนื้อความพรุนการวัดความเป็นทรงกลมการวัดพื้นที่ภาพฉายการวัดพื้นเอียงการหาความหนาแน่นรวมและการวัดความเร็วลม 2. วัสดุและวิธีการทดลอง 2.1 วัสดุ เมล็ดถั่วแดงหลวง (Red Kiney Bean) เป็นเมล็ดที่หามาจากไร่ธัญญะ 62/3 หมู่3 ตำบลบางใหญ่อำเภอบางใหญ่จังหวัดนนทบุรี 11140 เป็นถั่วแดงหลวงเชียงใหม่พันธุ์ดีผ่านกระบวนการคัดแยกผลิตและบรรจุคัดแยกเอาเฉพาะเมล็ดที่สมบูรณ์ไม่เป็นเชื้อราไม่ฟ่อลีบ เมล็ดถั่วแดงหลวงก่อนนำมาทดลองจะต้องมีลักษณะเมล็ดสีแดงเต่งแน่น ผิวไม่ขรุขระ และคัดแยกเอาเฉพาะเมล็ดที่อ้วนสมบูรณ์ ไม่มีแมลงหรือมอดกัดแทะโดยคัดเอาเมล็ดที่เป็นเชื้อราเมล็ดที่มีขนาดเล็กต่างจากพวกและเมล็ดที่ฟ่อออกเมล็ดที่ใช้ในการทดลองต้องเป็นเมล็ดที่มีขนาดสม่ำเสมอกันไม่เล็กบ้างใหญ่บ้าง 2.2.วิธีการทดลอง ค่าความชื้นเริ่มต้นของเมล็ดถั่วแดงหลวงสามารถหาได้จากแบ่งตัวอย่างออกเป็น 3 ชุดการทดลองชุดละประมาณ 5 กรัมโดยชั่งจากเครื่องชั่งไฟฟ้า 2 ตำแหน่งเมื่อชั่งน้ำหนักแล้วนำเมล็ดถั่วแดงหลวงใส่ลงในถาดฟรอยด์ที่เตรียมไว้ 1 ชุดการทดลองต่อ1 ถาดแล้วทำเครื่องหมายมาร์คไว้จากนั้นนำตัวอย่างทั้ง 3 ชุดเข้าตู้อบเพื่อหาความชื้นเริ่มต้นที่อุณหภูมิ 105˚C เป็นเวลา 2 ชั่วโมงเมื่อครบระยะเวลาที่กำหนดแล้วนำเมล็ดถั่วแดงทั้ง 3 ชุดไปพักไว้ที่ตู้ดูดความชื้นเพื่อรักษาระดับความชื้นไม่ให้เพิ่มขึ้นจากนั้นนำเมล็ดถั่วแดงหลวงทั้ง 3 ชุดมาชั่งน้ำหนักทีละชุดเพื่อคำนวณหาความชื้นเริ่มต้นเฉลี่ยโดยหาจากสูตรการหาเปอร์เซ็นต์ความชื้อเริ่มต้นฐานแห้ง (d.b) ดังสมการที่ 1 จะได้ค่าความชื้นเริ่มต้นของเมล็ดถั่วแดงที่ 4.43 % (d.b) จากการทดลองเราจะได้ %d.b. เท่ากับ4.43% หลังจากคำนวณหาค่าเปอร์เซ็นต์ความชื้นเริ่มต้นแล้วนำเมล็ดตัวอย่างจำนวน 100 เมล็ดปรับค่าเปอร์เซ็นต์ความชื้นโดยแต่ละถุงที่บรรจุเมล็ดถั่วแดงหลวงจะมีความชื้นไม่เท่ากันโดยแบ่งเป็น 4 ระดับโดยความชื้นจะเพิ่มขึ้นถุงละ 3% คือถุงแรกจะมีความชื้นเพิ่มขึ้น 3% ถุงที่สองมีความชื้น 6% ถุงที่สามมี ความชื้น 9% และถุงที่สี่มีความชื้น 12% โดยจะใช้ความชื้นพื้นฐานที่หามาได้แล้วบวกกับความชื้นที่เพิ่มขึ้นของแต่ละถุงจะได้ 7.43% , 10.43% ,13.43% และ 16.43% ตามลำดับโดยการคำนวณหาระดับปริมาณน้ำที่ต้องเติมเพื่อให้ได้ค่าเปอร์เซ็นต์ความชื้นที่ต้องการ จากนั้นเติมน้ำลงในถุงเก็บความชื้นพร้อมตัวอย่างในแต่ละชุดการทดลองโดยจะซีลปิดปากถุงให้เรียบร้อยเพื่อป้องกันความคลาดเคลื่อนของความชื้นภายในถุงเมล็ดที่ผ่านการปรับความชื้นแล้ว ก่อนนำไปทดลองจะต้องเก็บไว้ในตู้เย็นที่อุณหภูมิ 5˚C เป็นระยะเวลา 168 ชั่วโมงหรือ 7 วันในระหว่างที่เก็บในตู้เย็นต้องเขย่าถุงเมล็ดถั่วแดงหลวงทุกๆ 2 วันเพื่อให้มีความชื้นสม่ำเสมอทั่วทุกเมล็ด (เพื่อที่ทุกเมล็ดจะสัมผัสกับน้ำได้อย่างทั่วถึง) 2.3 ขนาด (size) นำเมล็ดถั่วแดงหลวง 100 เม็ดจากแต่ละระดับความชื้น มาหาขนาด (size) ของแต่ละเมล็ด ซึ่งประกอบด้วย ความยาว (L) ความกว้าง ( W) และความหนา ( T) โดยใช้เวอร์เนียร์คาร์ลิปเปอร์ ซึ่งค่า least count อยู่ที่ 0.05 cm. และนำค่ามาบันทึกผล ภาพที่1 ผลของปริมาณความชื้นต่อขนาด (Size) ของเมล็ดถั่วแดงหลวง 2.4ความเป็นทรงกลม (sphericity) วัดความยาว (L) ความกว้าง (W) และความหนา (T) เพื่อหาค่า Dimension นำค่าที่วัดได้ไปคำนวณหาค่าความเป็นทรงกลม (Ø) ของเมล็ดตัวอย่างซึ่งถ้าเมล็ดมีความกลมจะมีค่าความเป็นทรงกลมเท่ากับ 1 (100%) สามารถหาได้จากสมการ หาน้ำหนักหนักมวล 100 เมล็ดจากการทดลองโดยการซุ่มเลือกเมล็ดตัวอย่างจำนวน 100 เมล็ดชั่งบนเครื่องชั่งไฟฟ้าที่มีค่าความละเอียดอยู่ที่ 0.01g 2.5ความหนาแน่นเนื้อ (True Density) เตรียมเมล็ดถั่วแดงหลวงที่ความชื้นตามต้องการความชื้นละ 10 เมล็ด ชั่งน้ำหนักของเฮกเซนก่อนที่จะจุ่มเมล็ดถั่วแดง จากนั้นชั่งน้ำหนักของเฮกเซนหลังจุ่มเมล็ดถั่วแดงแล้ว ด้วยเครื่องชั่ง 4 ตำแหน่ง นำมาลบออกจากน้ำหนักของภาชนะที่ใส่เฮกเซนในเบื้องต้น ซึ่งความหนาแน่นของเฮกเซนมีค่าประมาณ 0.6548 g/ml. 2.6 ความหนาแน่นรวม (Bulk Density) การวัดความหนาแน่นรวมโดยเตรียมเมล็ดถั่วแดงหลวงที่ความชื้นที่ต้องการ นำไปเทใส่ภาชนะผ่านกรวยที่สูงประมาณ 15 เซนติเมตร จากนั้นนำไปชั่งน้ำหนัก ทำซ้ำทั้งหมด 3 ซ้ำเพื่อคำนวณหาความหนาแน่นรวมของเมล็ด จากสูตร ภาพที่ 2 การหาความหนาแน่นรวม (Bulk Density) 2.7 ความเร็วสุดท้าย (Terminal velocity) เตรียมเมล็ดถั่วแดงหลวงที่ความชื้นต้องการ ความชื้นละ 10 เมล็ด ใส่ลงในเครื่องปรับความเร็วรอบของมอเตอร์ (ทีละ 1 เมล็ด) ให้เมล็ดถั่วลอยขึ้น 80% ของท่อเป่าลม จากนั้นนำเครื่องวัดความเร็วลมวัดค่าความเร็วลมในขณะที่เมล็ดถั่วลอย ภาพที่3 การหาความเร็วลมสุดท้าย (Terminal velocity) 2.8สัมประสิทธิ์แรงเสียดทานสถิตย์ (Static Friction Coefficient) สัมประสิทธิ์แรงเสียดทานบนพื้นไม้พื้นโลหะและพื้นยางโดยมุมที่วัดได้คำนวณจาก 2.9การวัดเมล็ดถั่วแดงหลวงจากภาพฉาย เตรียมเมล็ดถั่วแดงหลวงที่ความชื้นต้องการมาเรียงบนกระดาษกราฟ จำนวนความชื้นละ 50 เมล็ดถ่ายรูปเมล็ดถั่วที่เรียงแล้ว นำไปลงในโปรแกรม Photoshop CS5 Extendedเพื่อ Cropภาพหา Pixel ของภาพ 1x1 จากนั้น Crop ภาพเมล็ดแต่ละเมล็ดหา Pixel นำมาคำนวณหาพื้นที่ของเมล็ดถั่วแดงหลวงจากสูตร ภาพที่ 4 แสดงการจัดเรียงเมล็ดถั่วแดงจำนวน 50 เมล็ด เรียงในกระดาษกราฟ 3. ผลการทดลองและวิจารณ์ 3.1 ขนาดของเมล็ดและการกระจายขนาด ขนาดเฉลี่ยของเมล็ด 100 เมล็ดที่วัดในความชื้น 4.43% d.b.มีความยาวเฉลี่ยอยู่ที่ 17.12±0.74 มม. ความกว้าง 8.66 ±0.47 มม. และความหนา6.37±0.48 มม. ที่ปริมาณความชื้น4.43% d.b. ประมาณ 97% ของเมล็ดมีความยาวตั้งแต่ 16.0 ถึง 18.0 มม. ประมาณ 95%, ความกว้างตั้งแต่ 8.0 ถึง 9.5 มม. และประมาณ 91 %, ความหนาตั้งแต่ 5.5 ถึง 7.0 มม. 3.2 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) เมื่อความชื้นมีค่าเพิ่มมากขึ้นเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตมีแนวโน้มเพิ่มมากขึ้นด้วย (ภาพที่5) เนื่องจากขนาดเมล็ดนั้นมีขนาดใหญ่ขึ้นแทนได้จากสมการ y=0.0077x+9.703 (R²=0.9653) ภาพที่5 ผลของปริมาณความชื้นต่อเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตของเมล็ดถั่วแดงหลวง 3.3 มวลรวม100 เมล็ด เมื่อความชื้นเพิ่มขึ้น ค่ามวลรวม 100 เมล็ดมีค่าเพิ่มมากขึ้น เนื่องจากเมล็กเกิดจากโพงตัวและมีขนาดขยายใหญ่ขึ้นเมื่อได้รับปริมาณในปริมาณเพิ่มมากขึ้นเรื่อยๆ (ภาพที่ 6) แทนได้จากสมการy= 1.2097x+47.927 (R² = 0.9174) ภาพที่ 6 ผลของปริมาณความชื้นต่อน้ำหนัก 100 เมล็ดถั่วแดงหลวง ซึ่งจากกราฟสอดคล้องกับงานวิจัยของ - İ. Yalçınand group (2007) - A. Al-Mahasneh,M. Rababah (2007) - R .Visvanathanand group (1989) - Kemal C ,ag˘ataySelvi and group (2006) 3.3 ลักษณะของเมล็ดถั่วแดง ผลของความชื้นต่อลักษณะทางกายภาพของเมล็ดถั่วแดงหลวงที่ได้ คือมี ความยาวมีขนาดเล็กลงซึ่งอาจเป็นผลมาจากการคัดเลือกเมล็ดก่อนจะนำไปปรับความชื้นส่วนความกว้างและความหนามีขนาดใหญ่ขึ้นซึ่งผลการทดลองสอดคล้องกับงานวิจัยของM.N. Amin *, M.A. Hossain, K.C. Roy (2003) . จะได้ว่าลักษณะทางกายภาพของเมล็ดถั่วแดงหลวงมีขนาดใหญ่ขึ้นทุกทิศทางไม่ว่าจะเป็นความกว้าง ความยาวและความหนา 3.3.1 ความยาว (Length) เมล็ดถั่วแดงหลวงมีขนาดความยาวตั้งแต่ 17.12ไปถึง 16.93mm.ในขณะที่ปริมาณความชื้นของเมล็ดเพิ่มขึ้นจาก 4.43% เป็น 16.43 % (ภาพที่7) ความยาวของเมล็ดถั่วแดงหลวงหน่วย mm.แทนด้วยสมการ L = -0.0177x + 17.182 (R² = 0.7917) ภาพที่7ผลของปริมาณความชื้นต่อความยาวของเมล็ดถั่วแดงหลวง 3.3.2. ความกว้าง (width) เมล็ดถั่วแดงหลวงมีขนาดความกว้างตั้งแต่7.86ไปถึง 8.91mm.ในขณะที่ปริมาณความชื้นของเมล็ดเพิ่มขึ้นจาก 4.43% เป็น 16.43 % (ภาพที่8) ความกว้างของเมล็ดถั่วแดงหลวงหน่วย mm.แทนด้วยสมการ W = 10.297x - 76.726 (R² = 0.9542) ภาพที่8 ผลของปริมาณความชื้นต่อความกว้างของเมล็ดถั่วแดงหลวง 3.3.3. ความหนา (Thickness) เมล็ดถั่วแดงหลวงมีขนาดความหนาตั้งแต่5.37ไปถึง 6.68mm. ในขณะที่ปริมาณความชื้นของเมล็ดเพิ่มขึ้นจาก 4.43% เป็น 16.43% (ภาพที่9) ความหนาของเมล็ดถั่วแดงหลวงหน่วย mm.แทนด้วยสมการ T = 9.0959x - 45.091 (R² = 0.9793) ภาพที่9 ผลของปริมาณความชื้นต่อความหนาของเมล็ดถั่วแดงหลวง ซึ่งจากกราฟความกว้าง ความยาวและความหนา จะเห็นได้ว่าเมื่อเพิ่มความชื้นให้แก่เมล็ดถั่วแดงในปริมาณเพิ่มขึ้นเรื่อยๆ จะทำให้สมบัติทางกายภาพในด้านความกว้าง ความยาวและความหนาเปลี่ยนไปจากเดิม เนื่องจากในเมล็ดถั่วแดงมีส่วนของสตาร์ช เมื่อได้รับความชื้น ทำให้สตาร์ชที่อยู่ภายในเมล็ดเกิดการพองตัว เมล็ดจะเต่งและบวมขึ้น ทำให้ด้านความยาวหดตัวลด (ภาพที่4) และด้านความกว้าง (ภาพที่4) และความหนา (ภาพที่6) เพิ่มขึ้นตามลำดับ 3.4ความเป็นทรงกลม (sphericity) ความเป็นทรงกลมของเมล็ดถั่วแดงหลวงเพิ่มขึ้นจาก 57.30%ถึง57.72%เพิ่มขึ้นตามปริมาณความชื้น (ภาพที่10) ความสัมพันธ์ระหว่างความเป็นทรงกลมและMc ความชื้นใน % d.b. สามารถแสดงโดยสมการดังต่อไปนี้ y = 0.0327 Mc + 57.16 ( R² = 0.997) ภาพที่10 ผลของปริมาณความชื้นต่อความเป็นทรงกลม จากกราฟ เมื่อค่าความชื้นเพิ่มมากขึ้นทำให้ทำให้ค่าความเป็นทรงกลมเพิ่มขึ้น มีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าความชื้น กล่าวคือ เมล็ดถั่วแดงดูดซึมน้ำเข้าไปมากขึ้น เมล็ดจะมีลักษณะบวมเต่ง ขนาดขยายใหญ่ขึ้น ทำให้มีค่าความเป็นทรงกลมเพิ่มมากขึ้นตามไปด้วย ซึ่งผลการทดลองสอดคล้องกับผลงานวิจัยของ - İ. Yalçın ,C. Özarslanand T. Akbaş (2007) - A. Al-Mahasneh,M. Rababah (2007) ซึ่งกราฟที่ได้จากการทดลองมีความชันมากกว่าผลงานวิจัย 3.5 ความหนาแน่นเนื้อ (True Density) ค่าความหนาแน่นเนื้อจาก 1.31 ถึง 1.37 กรัมเมื่อปริมาณความชื้นเพิ่มขึ้นจาก 4.43%d.bถึง 16.43%d.b (ภาพที่11) ค่าความหนาแน่นจริงกับปริมาณความชื้นได้สมการดังนี้ y = 0.0707x + 0.9069 (R² = 0.7987) ภาพที่11 ผลของปริมาณความชื้นต่อความหนาแน่นเนื้อ จากกราฟ เมื่อค่าความชื้นเพิ่มมากขึ้นทำให้ทำให้ค่าความหนาแน่นเนื้อเพิ่มขึ้น มีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าความชื้น กล่าวคือ เมล็ดถั่วแดงดูดซึมน้ำเข้าไปมากขึ้น น้ำจะเข้าไปแทนที่รูพรุนในเมล็ด ทำให้เมล็ดหนักขึ้น ค่าความหนาแน่นเนื้อจึงมากขึ้นตามไปด้วย ซึ่งกราฟจากการทดลองสอดคล้องกับผลของงานวิจัย - M. BülentCoşkun and group. (2006) - Kemal C,agataySelvi (2006) - Esref ISIK ,Halil U NAL (2007) ซึ่งกราฟที่ได้จากผลการทดลองน้อยกว่าผลของงานวิจัย 3.6 ความหนาแน่นรวม (Bulk Density) ค่าของความหนาแน่นรวมในระดับความชื้นที่แตกต่างกันจาก 0.69 ถึง 0.70 กรัม (ภาพที่12) ความหนาแน่นของเมล็ดกับความชื้นมีสมการดังต่อไปนี้ y = -0.0059Mc + 0.7987 (R² = 0.7903) ภาพที่12 ผลของปริมาณความชื้นต่อความหนาแน่นรวม จากกราฟ เมื่อค่าความชื้นเพิ่มมากขึ้นทำให้ทำให้ค่าความหนาแน่นรวมลดน้อยลง กราฟมีความสัมพันธ์เชิงเส้นแบบแปรผกผันกับค่าความชื้น เราหาค่าความหนาแน่นรวมโดยการเทเมล็ดถั่วแดงหลวงลงในกระบอกใส่โดยผ่านกรวย แต่เนื่องจากเมล็ดถั่วแดงดูดซึมน้ำเข้าไปมากขึ้น เมล็ดจะมีขนาดขยายใหญ่ขึ้น จึงใช้พื้นที่ในกระบอกใส่มากขึ้น และเมื่อความชื่นเพิ่มขึ้นเรื่อยๆจึงจุเมล็ดถั่วแดงหลวงได้น้อยลง ซึ่งผลการทดลองสอดคล้องกับงานวิจัยของ - İ. Yalçın ,C.Ozarslanand T. Akbaş (2007) - R .Visvanathan and group (1989) - Kemal C,agataySelvi and group (2006) -A. Al-Mahasneha, M. Rababah (2007) ซึ่งกราฟจากการทดลองมีความชันมากกว่ากราฟของงานวิจัย - Esref ISIK ,Halil U NAL (2007) ซึ่งกราฟจากการทดลองมีความชันมากกว่ากราฟของงานวิจัย 3.7 ความเร็วสุดท้าย ผลการทดลองสำหรับความเร็วสุดท้ายของเมล็ดถั่วแดงหลวงที่ระดับความชื้นต่างๆ (ภาพที่13) ความเร็วปลายพบว่าการเพิ่มเชิงเส้นตรง 12.61 ถึง 18.76 เป็นความชื้นที่เพิ่มขึ้นจาก 4.43% เป็น 16.43%d.b. ความสัมพันธ์ระหว่างความเร็วปลายและความชื้นสามารถแสดงโดยสมการ Vt = 0.536Mc + 10.032 (R² = 0.9913) ภาพที่13 ผลของปริมาณความชื้นต่อความเร็วปลาย จากกราฟ เมื่อค่าความชื้นเพิ่มมากขึ้นทำให้ทำให้ค่าความเร็วสุดท้ายเพิ่มขึ้น มีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าความชื้น กล่าวคือ เมื่อค่าความชื้นเพิ่มขึ้น เมล็ดถั่วแดงดูดซึมน้ำเข้าไปมากขึ้น ทำให้เมล็ดหนักขึ้น จึงต้องใช้ลมในการเป่าเมล็ดให้ลอยมากขึ้น ซึ่งสอดคล้องกับงานวิจัยของ - Es ref IS IK , Halil U NAL (2007) ซึ่งกราฟจากผลการทดลองมีความชันมากกว่าจากงานวิจัย - Kemal C ,agataySelviand group (2006) ซึ่งเส้นกราฟมีความชั้นน้อยกว่าจากผลการทดลอง 3.8 ค่าสัมประสิทธิ์แรงเสียดทานสถิต ค่าสัมประสิทธิ์แรงเสียดทานสถิตของเมล็ดถั่วแดงหลวง มีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้นแบบแปรผันตรงกับความชื้น (ภาพที่14) ซึ่งพบว่าค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ระหว่างเมล็ดถั่วแดงหลวงกับพื้นยางจะมีค่ามากที่สุดรองลงมาคืออลูมิเนียม และพื้นไม้มีค่าสัมประสิทธิ์แรงเสียดทานสถิตน้อยที่สุด พื้นยาง :y = 0.2959x+24.516 , R2=0.7085 พื้นไม้ :y = 0.349x+16.551 ,R2=0.7648 พื้นอลูมิเนียม :y = 0.4083x+17.72 , R2=0.9409 ภาพที่14ผลของปริมาณความชื้นต่อค่าสัมประสิทธิ์แรงเสียดทาน จากกราฟเมื่อค่าความชื้นเพิ่มมากขึ้นทำให้ค่าสัมประสิทธิ์แรงเสียดทานสถิตเพิ่มขึ้นทั้งสามพื้นการทดลองและมีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าความชื้น ซึ่งค่าสัมประสิทธิ์แรงเสียดทางสถิตกับพื้นยางมีค่ามากที่สุด ส่วนพื้นไม้มีค่าสัมประสิทธิ์แรงเสียดทานสถิตน้อยที่สุด แสดงว่าเมื่อค่าความชื้นเพิ่มมากขึ้นเมล็ดถั่วแดงหลวงสามารถทนต่อการไถลต่อพื้นยางได้มากกว่า พื้นอะลูมิเนียมและพื้นไม้ สอดคล้องกับงานวิจัยของ - Es ref IS IK ,Halil U NAL (2007) ซึ่งเส้นกราฟมีความชันมากกว่าจากผลการทดลอง - A.Al-Mahasneha, M. Rababah (2005) ซึ่งกราฟจากการทดลองมีความชันมากกว่ากราฟของงานวิจัย - R.Visvanathan and group (1989) 3.9 พื้นที่ภาพฉาย พื้นที่ภาพฉายของเมล็ดถั่วแดงหลวงเพิ่มจาก 1.11 ถึง 1.35 cm2 ในขณะที่ปริมาณความชื้นของเมล็ดเพิ่มขึ้นจาก 4.43% เป็น 16.43 % (ภาพที่15) ในApของพื้นที่ภาพฉายในหน่วย cm2แทนด้วยสมการ Ap= 0.0179 Mc+1.0536 (R2=0.9532) ภาพที่15 ผลของปริมาณความชื้นต่อพื้นที่ภาพฉาย จากกราฟ เมื่อค่าความชื้นเพิ่มมากขึ้นทำให้ทำให้ค่าพื้นที่ภาพฉายเพิ่มขึ้น มีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าความชื้น กล่าวคือ เมื่อความชื้นมีปริมาณมากขึ้นเมล็ดถั่วแดงจะมีขนาดใหญ่ขึ้น จึงทำให้ใช้พื้นที่ภาพฉายมากขึ้น ซึ่งสอดคล้องกับงานวิจัยของ - Es_ref IS_IK *, Halil U¨NAL (2007) ซึ่งเส้นกราฟมีความชันมากกว่าจากการทดลอง วิจารณ์ผลการทดลอง ความชื้นของเมล็ดถั่วแดงอาจเกิดความคลาดเคลื่อนจากผู้ทดลอง เนื่องจากผู้ทดลองอาจไปสัมผัสหรือจับกับเมล็ดถั่วแดงหลวงโดยตรง ในช่วงการทดลองที่หาค่า ความหนาแน่นเนื้อ (True Density) ทำให้ความชื้นในเมล็ดถั่วแดงอาจเกิดความคลาดเคลื่อนขึ้น หรือในระหว่างการหาค่า True Density ที่จะต้องใช้เข็มขนาดเล็กจิ้มลงบนเมล็ดถั่วแดง อาจทำให้เนื้อสัมผัสเป็นรูพรุน อาจทำให้สารละลายเฮกเซนซึมเข้าไปในเมล็ดได้มากขึ้น จึงอาจทำให้ค่าที่ชั่งเปลี่ยนแปลงไปจากเดิม 4.สรุปผลการทดลอง 4.1 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) มีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าของความชื้น 4.2 มวลรวม 100 เมล็ด ความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าของความชื้น 4.3ความกว้าง (Width) และความหนา (Thickness) ของเมล็ดถั่วแดงหลวงมีความสัมพันธ์ชิงเส้นแบบแปรผันตรงกับค่าของความชื้น ส่วนความยาว (Length) มีความสัมพันธุ์เชิงเส้นแบบแปรผกผันกับค่าความชื้น 4.4 ค่าความเป็นทรงกลม (sphericity) ของเมล็ดถั่วแดงหลวง มีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าของความชื้น 4.5ความหนาแน่นเนื้อ (True Density) ของเมล็ดถั่วแดงหลวงมีความสัมพันธ์แบบเชิงเส้น โดยพบว่าเมื่อค่าของความชื้นเพิ่มขึ้นเมล็กหนักขึ้นทำให้ความหนาแน่นเนื้อเพิ่มมากขึ้น 4.6ความหนาแน่นรวม (Bulk Density) ของเมล็ดถั่วแดงหลวงมีความสัมพันธ์เชิงเส้นแบบแปรผกผันกับค่าความชื้น 4.7ความเร็วลมสุดท้าย (TeminalVelicity) ของเมล็ดถั่วแดงหลวงมีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าความชื้น 4.8สัมประสิทธิ์แรงเสียดทานสถิต (Static friction Coefficient) ของเมล็ดถั่วแดงหลวง มีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าความชื้น โดยค่า สัมประสิทธิ์แรงเสียดทานสถิตที่มากที่สุด คือ พื้นยาง และ สัมประสิทธิ์แรงเสียดทานสถิตที่มีค่าน้อยที่สุด คือ พื้นไม้ 4.9พื้นที่ภาพฉาย (Projected Area) ของเมล็ดถั่วแดงหลวงมีความสัมพันธ์เชิงเส้นแบบแปรผันตรงกับค่าความชื้น เอกสารอ้างอิง - Es ref IS IK ,Halil U NAL, (2007) .Moisture-dependent physical properties of white speckledred kidney bean grains P. (209-216) - Amin, M. and group. (2004) Effects of moisture content on some physical properties of lentil seeds P. ( 83-87) - A .Al-Mahasneh, M . Rababah (2005) Effect of moisture content on some physicalproperties of green wheat P. ( 1467-1473) - R .Visvanathanand group. (1989) Physical Properties of Neem Nut P. ( 19 - 26) - Kemal C, agataySelvi and group. (2006) Some Physical Properties of Linseed P. ( 607-612)
    ขนาดสินค้าที่ถูกต้อง เป็นจุดเริ่มต้นของคุณภาพสินค้าที่ดีเยี่ยม
    โดย : คุณสรยุทธ อุจจภูรี Sale & Service Directorsorayut.ujjaphuree@marel.comwww.marel.com ขนาดสินค้าที่ถูกต้อง เป็นจุดเริ่มต้นของคุณภาพสินค้าที่ดีเยี่ยม (Exactly Size for Great Quality) ในปัจจุบันเป็นที่ทราบกันดีว่าวัตถุดิบที่เข้ามาในสายการผลิตจะมีขนาด รูปร่าง และน้ำหนักที่หลากหลายถึงแม้ว่าจะมาจากแหล่งผลิตเดียวกัน เช่น กุ้ง ไก่ ที่ถูกเลี้ยงมาจากแหล่งเดียวกัน หรือแม้แต่ให้อาหารเหมือนกันในระยะเวลาการเลี้ยงที่เท่ากัน ผัก ผลไม้ ที่เพาะปลูกมาจากแหล่งเดียวกัน ในเวลาพร้อมๆ กัน แต่กลับพบว่าอัตราการเจริญเติบโตหรือขนาดวัตถุดิบที่ได้มีความแตกต่างกัน ดังนั้น เมื่อวัตถุดิบเข้ามาถึงสายการผลิต จึงจำเป็นต้องมีการคัดแยกขนาด ซึ่งการคัดแยกขนาดที่ถูกต้อง แม่นยำ มีประโยชน์ต่างๆ ดังนี้ 1. สามารถเพิ่มมูลค่าสินค้าด้วยตัวสินค้าเอง เช่น การนำเสนอสินค้าระดับพรีเมียม หากมีสินค้าที่เรียงกันอย่างเป็นระเบียบสวยงาม โดยมีขนาดสินค้าที่เท่ากันทุกชิ้นจะแสดงให้เห็นถึงความเอาใจใส่ในตัวสินค้าของผู้ผลิต ซึ่งสามารถสร้างความมั่นใจในคุณภาพสินค้าแก่ผู้บริโภค แม้สินค้านั้นจะมีราคาสูงขึ้นเล็กน้อย 2. สามารถสร้างผลกำไรได้มากขึ้น เช่น สินค้าแต่ละขนาดจะมีราคาต่างกัน หากคัดขนาดไม่ถูกต้องจะทำให้ขนาดสินค้าที่ควรมีราคาสูงไปรวมอยู่กับขนาดสินค้าที่ราคาต่ำกว่า ทำให้เสียผลประโยชน์ไปโดยไม่ตั้งใจ 3. ได้สินค้าที่มีคุณภาพสม่ำเสมอ เช่น การหมักสินค้าให้เครื่องปรุงเข้าเนื้อไก่หรือกุ้ง หากใช้เงื่อนไขในการหมัก เช่น เครื่องปรุง เวลา อุณหภูมิเดียวกัน แต่สินค้าที่นำมาหมักกลับมีขนาดไม่เท่ากัน ก็จะส่งผลให้การหมักสินค้าไม่มีความสม่ำเสมอ ทำให้สินค้ามีคุณภาพไม่ดี 4. สามารถเพิ่มผลผลิต (Yield) ในการผลิต เช่น การต้มกุ้งหรือปลาทูน่าด้วยระบบไอน้ำจะทำให้มีการสูญเสียน้ำ (ซึ่งคือน้ำหนักนั่นเอง) ขณะทำการเพิ่มอุณหภูมิในตัวสินค้า หากไม่ควบคุมขนาดสินค้าที่เท่ากันจะทำให้ต้องใช้เวลาต้มนานขึ้นเพื่อให้สินค้าชิ้นใหญ่ที่สุดได้รับอุณหภูมิทั่วถึงและถึงจุดที่ต้องการ ในขณะที่สินค้าชิ้นเล็กกว่าจะสูญเสียน้ำในตัวมากขึ้นเรื่อยๆ เกินจุดที่ต้องการ 5. สามารถลดการบรรจุน้ำหนักเกิน (Give away) ได้ ยกตัวอย่างเช่น การบรรจุสินค้าที่กำหนดจำนวนชิ้นและน้ำหนักรวมต่อแพ้ค เช่นไก่คาราเกะ กำหนดจำนวนชิ้น 30 ชิ้น ที่น้ำหนักรวม 1,000 กรัม/แพ้ค ดังนั้นน้ำหนักสินค้าเฉลี่ยต่อชิ้นควรอยู่ที่ 33.3 กรัม หากไม่มีการคัดขนาดที่ถูกต้องและไม่ได้น้ำหนักเฉลี่ยต่อชิ้นตามนี้ การบรรจุอาจจะได้จำนวนชิ้นที่ถูกต้อง 30 ชิ้น แต่น้ำหนักอาจจะเกินไปเป็น 1,010-1,020 กรัม (น้ำหนักที่เกินมา 10-20 กรัมนี้ เรียกว่า Give away) ทำให้สูญเสียประโยชน์ที่พึงได้จากการบรรจุ จากตัวอย่างและเหตุผลที่กล่าวมานั้นอาจจะเห็นเป็นตัวเลขที่เล็กน้อย แต่ในโรงงานที่ผลิตเป็นจำนวนมาก เช่น 10-100 ตัน/วัน หรือมากกว่า และสินค้ามีราคาสูง การเก็บผลประโยชน์ที่ตกหล่นเหล่านี้กลับคืนมาต่อปีนั้นเป็นตัวเงินมหาศาลที่เดียว
    สมัครสมาชิก

    สนับสนุนโดย / Supported By

    • บริษ้ท มาเรล ฟู้ดส์ ซิสเท็ม จำกัด จัดจำหน่ายเครื่องจักรและอุปกรณ์การแปรรูปอาหาร เช่น ระบบการชั่งน้ำหนัก, การคัดขนาด, การแบ่ง, การตรวจสอบกระดูก และการประยุกต์ใช้ร่วมกับโปรแกรมคอมพิวเตอร์ พร้อมกับบริการ ออกแบบ ติดตั้ง กรรมวิธีการแปรรูปทั้งกระบวนการ สำหรับ ผลิตภัณฑ์ ปลา เนื้อ และ สัตว์ปีก โดยมีวิศวกรบริการและ สำนักงานตั้งอยู่ที่กรุงเทพ มาเรล เป็นผู้ให้บริการชั้นนำระดับโลกของอุปกรณ์การแปรรูปอาหารที่ทันสมัย​​ครบวงจรทั้งระบบ สำหรับอุตสาหกรรม ปลา กุ้ง เนื้อ และสัตว์ปีก ต่างๆ เครื่องแปรรูปผลิตภัณฑ์สัตว์ปีก Stork และ Townsend จาก Marel อยู่ในกลุ่มเครื่องที่เป็นที่ยอมรับมากที่สุดในอุตสาหกรรม พร้อมกันนี้ สามารถบริการครบวงจรตั้งแต่ต้นสายการผลิตจนเสร็จเป็นสินค้า เพื่ออำนวยความสะดวกให้กับทุกความต้องการของลูกค้า ด้วยสำนักงานและบริษัทสาขามากกว่า 30 ประเทศ และ 100 เครือข่ายตัวแทนและผู้จัดจำหน่ายทั่วโลก ที่พร้อมทำงานเคียงข้างลูกค้าเพื่อขยายขอบเขตผลการแปรรูปอาหาร Marel Food Systems Limited. We are supply weighing, grading, portioning, bone detection and software applications as well as complete turn-key processing solutions for fish, meat and poultry. We have service engineer and office in Bangkok. Marel is the leading global provider of advanced food processing equipment, systems and services to the fish, meat, and poultry industries. Our brands - Marel, Stork Poultry Processing and Townsend Further Processing - are among the most respected in the industry. Together, we offer the convenience of a single source to meet our customers' every need. With offices and subsidiaries in over 30 countries and a global network of 100 agents and distributors, we work side-by-side with our customers to extend the boundaries of food processing performance.
    • วิสัยทัศน์ของบริษัท คือ การอยู่ในระดับแนวหน้า "ฟอร์ฟร้อนท์" ของเทคโนโลยีประเภทต่างๆ และนำเทคโนโลยีนั้นๆ มาปรับใช้ให้เหมาะสมกับอุตสาหกรรมและกระบวนการผลิตในประเทศไทย เพื่อผลประโยชน์สูงสุดของลูกค้า บริษัท ฟอร์ฟร้อนท์ ฟู้ดเทค จำกัด เชื่อมั่นและยึดมั่นในอุดมการณ์การดำเนินธุรกิจ กล่าวคือ จำหน่าย สินค้าและให้บริการที่มีคุณภาพสูง ซึ่งเหมาะสมกับความต้องการของลูกค้า ด้วยความซื่อสัตย์และความตรงต่อเวลา เพื่อการทำธุรกิจที่ประสบความสำเร็จร่วมกันระยะยาว Our vision is to be in the "forefront" of technology in its field and suitably apply the technology to industries and production in Thailand for customers' utmost benefits. Forefront Foodtech Co., Ltd. strongly believes in and is committed to our own business philosophy which is to supply high quality products and service appropriately to each customer's requirements with honesty and punctuality in order to maintain long term win-win business relationship. Forefront Foodtech Co., Ltd. is the agent company that supplies machinery and system, install and provide after sales service as well as spare parts. Our products are: Heinrich Frey Maschinenbau Gmbh, Germany: manufacturer of vacuum stuffers and machinery for convenient food Kronen GmbH, Germany: manufacturer of machinery for vegetable and fruits from washing to packing Nock Fleischerei Maschinenbau GmbH, Germany: manufacturer of skinning machines, membrane skinning machine, slicers and scale ice makers K + G Wetter GmbH, Germany: manufacturer of grinders and bowl cutters Ness & Co. GmbH, Germany: manufacturer of smoke chambers, both stand alone and continuous units Dorit DFT GmbH, Germany: manufacturer of tumblers and injectors Maschinenfabrik Leonhardt GmbH, Germany: manufacturer of dosing and filling equipment
    • We are well known for reliable, easy-to-use coding and marking solutions which have a low total cost of ownership, as well as for our strong customer service ethos. Developing new products and a continuous programme of improving existing coding and marking solutions also remain central to Linx's strategy. Coding and marking machines from Linx Printing Technologies Ltd provide a comprehensive solution for date and batch coding of products and packaging across manufacturing industries via a global network of distributors. In the industrial inkjet printer arena, our reputation is second to none. Our continuous ink jet printers, laser coders, outer case coders and thermal transfer overprinters are used on production lines in many manufacturing sectors, including the food, beverage, pharmaceutical, cosmetics, automotive and electronic industries, where product identification codes, batch numbers, use by dates and barcodes are needed. PTasia, THAILAND With more than 3,700 coding, marking, barcode, label applicator, filling, packing and sealing systems installed in THAILAND market. Our range is includes systems across a wide range of technologies. To select the most appropriate technology to suit our customers. An excellent customer service reputation, together with a reputation for reliability that sets standards in the industry, rounds off the PTAsia offering and provides customers with efficient and economical solutions of the high quality. Satisfyingcustomers inTHAILAND for 10 years Our 1,313 customers benefit from our many years of experience in the field, with our successful business model of continuous improvement. Our technical and service associates specialise in providing individual advice and finding the most efficient and practical solution to every requirment. PTAsia extends its expertise to customers in the food, beverage, chemical, personal care, pharmaceutical, medical device, electronics, aerospace, military, automotive, and other industrial markets.