News and Articles

สมบัติทางกายภาพของวัตถุดิบสมุนไพร

สมบัติทางกายภาพของวัตถุดิบสมุนไพร


หมวดหมู่: การพัฒนากระบวนการผลิตชาสมุนไพรคุณภาพสูงระดับ SME [ผลงานวิจัย]
วันที่: 8 เมษายน พ.ศ. 2555

โครงการพัฒนาการผลิตชาสมุนไพรคุณภาพสูงระดับ SME

นิยาม สมบัติทางกายภาพ (ปานมนัส และคณะ, 2538) เป็น สมบัติทางไฟฟ้า กลสาสตร์ แสง เสียง ความร้อน ของวัสดุต่างๆ ว่ามันมีการตอบสนองอย่างไรต่อการกระทำทางไฟฟ้า กลศาสตร์ แสง เสียง และความร้อนนั้นๆความรู้เกี่ยวกับสมบัติทางกายภาพและวิศวกรรมของชีววัสดุ พัฒนาขึ้นมาเพื่อหาวิธีการวัดประเมินค่าคุณสมบัติดังกล่าวในเชิงปริมาณ แล้วเอาคุณสมบัตินั้นมาใช้ในการกำหนดปัจจัยเพื่อให้ควบคุมคุณภาพ การออกแบบเครื่องจักรอุปกรณ์ที่ใช้ในการแปรรูปและเครื่องมือที่เกี่ยวข้อง การออกแบบและควบคุมระบบการแปรรูป การออกแบบและควบคุมการบรรจุและภาชนะบรรจุ การขนส่งขนถ่ายและเก็บรักษาวัตถุดิบตลอดจนผลิตภัณฑ์ ซึ่งเป็นข้อมูลสำคัญและเป็นประโยชน์สำหรับวิศวกรอาหาร สมบัติเชิงเรขาคณิต (Gemetrical Property) สมบัติเชิงเรขาคณิต ได้แก่ ขนาดและรูปร่าง พื้นที่ผิว ปริมาตรและมวล ความหนาแน่น ความถ่วงจำเพาะ ความพรุน พื้นที่ผิวจำเพาะเป็นต้น ซึ่งสมบัติดังกล่าวเกี่ยวข้องเกือบทุกขั้นตอนของขบวนการแปรรูปอาหาร ตั้งแต่การเก็บเกี่ยว ขบวนการหลังการเก็บเกี่ยว การเก็บรักษา การแปรรูป การบรรจุ และมีผลต่อการยอมรับของผู้บริโภคสมบัติเชิงเรขาคณิตของอาหารและวัสดุเกษตร1.รูปร่างและขนาด (shape and size) รูปร่างและขนาดของชีววัสดุ มักจะเป็นสมบัติที่แยกกันไม่ออก หากจะอธิบายสมบัติของวัสดุก็จะต้องอธิบายว่ามีรูปร่างเป็นอย่างไร มีขนาดอย่างไรด้วยเสมอ ทั้งรูปร่างและขนาดของวัสดุเป็นสมบัติที่เป็นสมบัติที่มีผลกระทบต่อขบวนการต่างๆ เช่น กระบวนการแปรรูป กระบวนการลำเลียง กระบวนการแยกทำความสะอาด กระบวนการบรรจุ เป็นต้น ดังจะยกตัวอย่าง เช่น ขนาดและรูปร่างของผลไม้มีผลต่อขนาดของภาชนะบรรจุ ขนาดและรูปร่างของเมล็ดข้าวเปลือกและฟางมีผลต่อการแยกทำความสะอาดวัสดุเหล่านี้ด้วยลม ขนาดและรูปร่างขอสับปะรดมีผลต่อวิธีการปลอกเปลือก การเจาะคว้านไส้ เป็นต้น การอธิบายรูปร่างและขนาด ของชีววัสดุมีหลายวิธีจะขอยกตัวอย่างในกรณีของผัก ผลไม้ เมล็ดพืช และแป้ง เป็นต้น

ตารางที่ 1 ลักษณะรูปร่างและความหมาย

สมบัติทางกายภาพของวัตถุดิบสมุนไพร

2.เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric Mean Diameter: GMD) หากวัสดุมีรูปร่างเป็นทรงกลมกำหนดขนาดจากเส้นผ่านศูนย์กลางได้เลย หากมีรูปร่างคล้ายทรงกลมหรือไม่เป็นทรงกลม สามารถกำหนดขนาดจากเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตซึ่งพิจารณาได้ง่าย ๆ จากการวัดขนาด ด้าน a คือเส้นผ่านศูนย์กลางที่ยาวที่สุด ด้าน b คือ เส้นผ่านศูนย์กลางที่ยาวที่สุดที่ตั้งฉากกับ a และด้าน c คือ เส้นผ่านศูนย์กลางที่ยาวที่สุดที่ตั้งฉากกับ a และ b GMD = (abc) ^ (1/3) 3.ปริมาตรของวัสดุ (Volume) ปริมาตรเป็นค่าที่แสดงถึงขอบเขตครอบครองของวัสดุทั้งของแข็ง ของเหลว และก๊าซ ปริมาตรของวัสดุทางเกษตรและอาหาร มีผลต่อขนาดที่เก็บรักษาอุปกรณ์การแปรรูป วิธีการหาปริมาตรนั้นมีหลายวิธีซึ่งจะใช้วิธีตามความเหมาะสมและข้อจำกัดของวัสดุ วิธีการชั่งน้ำหนักของวัตถุในของเหลว สามารถอธิบายได้ดังนี้

สมบัติทางกายภาพของวัตถุดิบสมุนไพร

น้ำหนักวัตถุที่ชั่งในของเหลวคือ น้ำหนักของของเหลวที่ถูกแทนที่ด้วยวัตถุ นั่นคือแรงพยุงวัตถุของของเหลวนั่นเอง ฉะนั้น ปริมาตรของวัตถุ

vวัสดุ=mL/ρL vวัสดุ = ปริมาตรของวัสดุ mL = มวลของน้ำที่ถูกแทนที่ρL = ความหนาแน่นของน้ำ

4.ความเป็นทรงกลม (Sphericity) การบ่งบอกความเป็นทรงกลมของวัสดุ

ความเป็นทรงกลม = ( (abc) ^ (1/3) ) /aเมื่อ a คือเส้นผ่านศูนย์กลางที่ยาวที่สุด ด้าน b คือ เส้นผ่านศูนย์กลางที่ยาวที่สุดที่ตั้งฉากกับ a และด้าน c คือ เส้นผ่านศูนย์กลางที่ยาวที่สุดที่ตั้งฉากกับ a และ b

5.ความหนาแน่นเนื้อ (Solid density) คำนวณจากเนื้อวัสดุล้วนๆ เป็นค่าที่ให้เห็นถึงความแน่นเนื้อของวัสดุเอง มีความสำคัญต่อกรับวนการคัดแยก เช่น ตกตะกอนหรือการเหวี่ยง (Centifugation) และกระบวนการลำเลียงของไหล กระบวนการแปรรูป เช่น การลดความชื้น การจับกันเป็นก้อน (Agglomeration) มีผลต่อการเกิดช่องว่างหรือรูพรุนในเนื้ออาหารซึ่งก็ทำให้ค่าความหนาแน่นเนื้อเปลี่ยนแปลงไป6.ความหนาแน่นรวม (Bulk density) ความหนาแน่นของวัสดุปริมาตรมวล ซึ่งคำนวณจากมวลของวัสดุหารด้วยปริมาตรรวมของวัสดุ ซึ่งปริมาตรรวมนั้นรวมปริมาตรของช่องว่างระหว่างวัสดุเองและวัสดุกับภาชนะที่บรรจุด้วยค่าความหนาแน่นรวมของวัสดุขึ้นกับปัจจัยหลายๆอย่าง เช่น ความหนาแน่นเนื้อ รูปร่าง ขนาด ลักษณะผิว ความชื้น สิ่งปะปน วิธีการบรรจุ และวิธีการวัด7.พื้นที่ภาพฉาย

วิธีการทดลองหาคุณสมบัติกายภาพ2.1 ขนาด (Size) นำสมุนไพรที่ต้องการหาขนาดมาจำนวน 10 ตัวอย่าง ทำการวัดขนาดความยาวเส้นผ่านศูนย์กลางด้าน a, b และ cโดยใช้เวอร์เนียคาร์ลิปเปอร์ หรือไม้บรรทัดในการวัด ทำการวัดจำนวน 3 ซ้ำ สมุนไพรที่ใช้หาขนาดด้วยวิธีนี้ได้แก่ มะระขี้นก มะลิ ตะไคร้ ขมิ้น a = เส้นผ่านศูนย์กลางที่ยาวที่สุด (cm) b = เส้นผ่านศูนย์กลางที่ยาวที่สุดที่ตั้งฉากกับ a (cm) c = เส้นผ่านศูนย์กลางที่ยาวที่สุดที่ตั้งฉากกับ a และ b (cm)

2.2 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric mean diameter,GMD) นำค่าเฉลี่ยที่ได้จากการวัดขนาดสมุนไพรมาคำนวณหาเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตจากสมการ

GMD= (abc) ^ (1/3) (1)

2.3 ความเป็นทรงกลม (Sphericity, ø) ค่าที่พิจารณาจะมีความใกล้เคียงกับความเป็นทรงกลมของวัสดุ ซึ่งวัสดุที่เป็นทรงกลมสัมบูรณ์ จะมีค่าความเป็นทรงกลมเท่ากับ 1 ซึ่งสามารถหาค่าความเป็นทรงกลมได้จากสมการ ø =GMD/a (2)

2.4 การหาปริมาตร (Volume,v) การหาปริมาตรของวัสดุสามารถทำได้ 2 วิธี โดยวิธีที่ 1.ใช้หลักการแทนที่ของเหลว และวิธีที่ 2 ใช้หลักการแทนที่ของแข็ง โดยทั้งสองวิธีนี้เหมาะกับการหาปริมาตรวัสดุที่มีรูปร่างไม่เป็นไปตามรูปทรงเรขาคณิต1.ใช้หลักการแทนที่ของเหลว (ใช้น้ำในการทดลอง) สมุนไพรที่ใช้ ได้แก่ มะระขี้นก ขมิ้น และตะไคร้ โดยการหาปริมาตรของวัสดุซึ่งหาได้จาก นำของเหลวใส่กระบอกตวงแล้วนำไปชั่งบันทึกค่าน้ำหนักที่อ่านได้ นำลวดทิ่มลงไปในผิววัสดุและยึดไว้กับอุปกรณ์ดังรูปที่ 1 ปรับให้วัสดุจมพอดีกับระดับผิวน้ำ อ่านค่าน้ำหนักที่เพิ่มขึ้นซึ่งคือ มวลของของเหลวที่ถูกแทนที่ด้วยวัสดุ ดังนั้นปริมาตรของวัสดุ คำนวณได้จากvวัสดุ=mL/ρL (3) vวัสดุ = ปริมาตรของวัสดุ mL = มวลของน้ำที่ถูกแทนที่ ρL = ความหนาแน่นของน้ำ

สมบัติทางกายภาพของวัตถุดิบสมุนไพร

2.ใช้หลักการแทนที่ของแข็ง (ใช้เมล็ดแมงลักในการทดลอง) สมุนไพรที่ใช้ ได้แก่ ดอกอัญชัน มะลิ โดยการหาปริมาตรของวัสดุซึ่งหาได้จาก นำเมล็ดแมงลักใส่กระบอกตวงที่1 ที่ทราบปริมาตรจนเต็ม นำไปชั่งและบันทึกผล นำสุมนไพรจำนวน 30 ดอกใส่ในกระบอกตวงที่ 2 ที่มีปริมาตรเท่ากัน จากนั้นเทเมล็ดแมงลักจากกระบอกตวงที่ 1 ใส่กระบอกตวงที่ 2 จนเต็มพอดี นำเมล็ดแมงลักที่เหลือไปชั่ง อ่านค่าที่ได้แล้วลบน้ำหนักกระบอกตวง จะได้เมล็ดแมงลักที่เหลืออยู่ซึ่งคือ มวลของของแข็งที่ถูกแทนที่ด้วยวัสดุ ดังนั้นปริมาตรของวัสดุ คำนวณได้จาก

vวัสดุ=mแมงลัก/ρแมงลัก (4)

vวัสดุ = ปริมาตรของวัสดุmแมงลัก = มวลของเมล็ดแมงลักที่ถูกแทนที่ ρแมงลัก = ความหนาแน่นของเมล็ดแมงลัก

2.5 ความหนาแน่นเนื้อ (Solid density, ρs) สามารถคำนวณหาความหนาแน่นเนื้อได้จากสมการρs=mวัสดุ/vวัสดุ (5) mวัสดุ = มวลวัสดุที่ชั่งในอากาศ ρs = ความหนาแน่นเนื้อ

2.6 ความหนาแน่นรวม (Bulk density, ρb) ความหนาแน่นรวม (Bulk density) สามารถหาค่าได้โดยการนำภาชนะที่ทราบปริมาตร (ภาชนะที่ใช้จะขึ้นอยู่กับลักษณะของวัสดุ) ไปชั่งน้ำหนักแล้วบันทึกค่า จากนั้นเตรียมอุปกรณ์ดังรูปที่ 2 โดยปรับตำแหน่งปลายกรวยให้สูงจากปากกระบอกตวงประมาณ 15 cm. เทสมุนไพรผ่านกรวยลงในภาชนะจนล้นจากนั้นปาดสมุนไพรให้เสมอภาชนะ นำไปชั่งน้ำหนักแล้วลบน้ำหนักภาชนะออก จะได้มวลของสมุนไพร (m) ส่วน (v) คือปริมาตรที่ขึ้นอยู่กับภาชนะที่ใช้ โดยสมุนไพรที่ใช้ ได้แก่ มะลิ ทำการทดลอง 5 ซ้ำ จากนั้นคำนวณค่าความหนาแน่นรวมจากสมการρb=m/v (6)

สมบัติทางกายภาพของวัตถุดิบสมุนไพร

2.7 ความพรุน (Porosity, ε) สมุนไพรที่สามารถหาความหนาแน่นเนื้อ และความหนาแน่นรวมนั้น สามารถนำมาใช้ในการหาค่าความพรุนได้จากสมการ ε=1-ρb/ρs (7)

2.8 สัมประสิทธิ์แรงเสียดทานสถิต (Static coefficient of friction, μ)

ค่าสัมประสิทธิ์แรงเสียดทานสถิตของสมุนไพร จะทำการทดลองบนพื้นผิวทดสอบที่มีลักษณะต่าง ๆ กันได้แก่ แผ่นไม้, ยาง, แผ่นอะคริลิก และอลูมิเนียม โดยวางสมุนไพรบนเครื่องมือวัดสัมประสิทธิ์แรงเสียดทานสถิต เอียงแผ่นทดสอบจนวัสดุไถลลงอย่างอิสระ แล้วอ่านค่ามุมที่วัสดุเริ่มไถล ดังรูปที่ 3

สมบัติทางกายภาพของวัตถุดิบสมุนไพร

สามารถคำนวณหาค่าสัมประสิทธิ์แรงเสียดทานสถิตได้จากสมการ

μ=tanθ (8) μ= สัมประสิทธิ์แรงเสียดทานสถิต θ= มุมที่วัสดุเริ่มไถล2.9 พื้นที่ภาพฉาย (Projected area) การหาขนาดโดยใช้พื้นที่ภาพฉาย สมุนไพรที่ใช้ได้แก่ รางจืด อัญชัน ใบเตย ใบมะรุม โดยนำสมุนไพรมาเรียงเป็นแถวบนกระดาษ พร้อมวาดกรอบอ้างอิงขนาด 1 cm x 1 cm แล้วถ่ายภาพ ใช้โปรแกรม Adobe Photoshop คำนวณหาพื้นที่ภาพฉาย โดยเทียบพื้นที่ของสมุนไพรกับพื้นที่อ้างอิง 1 cm2

ผลการทดลองสมบัติทางกายภาพ



ข่าวและบทความที่เกี่ยวข้อง
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดข้าวบาร์เลย์
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดข้าวบาร์เลย์ (Effect of moisture content on some physical properties of Barley) สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง วริศรา สาระนิตย์ , อริสรา เลียงประสิทธิ์ , เอกนุช แย้มเกษร, วสันต์ อินทร์ตา บทคัดย่อ การศึกษาสมบัติทางกายภาพของข้าวบาร์เลย์ (Barley) พิจารณาจากความชื้นฐานแห้งที่เมล็ดข้าวบาร์เลย์ได้รับในช่วง 2.52% ถึง 14.52% ทั้งหมด 5 ระดับ พบว่า [ค่าขนาด (Size) ความยาว (L) ความกว้าง (W) ความหนา (T) ] มีค่าอยู่ในช่วง4.00 -6.50 mm , 3.00 - 4.75 mm , 2.25 - 3.25 mm ตามลำดับ ค่าเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric Mean Diameter , GMD) มีค่าอยู่ในช่วง 3.30 - 4.17 mm ค่าความเป็นทรงกลม (Sphericity) มีค่าอยู่ในช่วง 0.66 - 1.06% ค่าน้ำหนัก 1,000 เมล็ดของเมล็ดข้าวบาร์เลย์ (1,000 seeds mass) มีค่าอยู่ในช่วง 35.91-41.94g ค่าความหนาแน่นเนื้อ (True density) มีค่าอยู่ในช่วง 1.38 - 1.65 g/ml ค่าความพรุน (Porosity) มีค่าอยู่ในช่วง 42.2040-46.3863% และค่าความเร็วสุดท้าย (Terminal Velocity) มีค่าอยู่ในช่วง 9.62 -13.20 rpm จะพบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มเพิ่มขึ้นแบบเป็นเชิงเส้น แต่ในทางกลับกันพบว่าค่าความหนาแน่นรวม (Bulk density) ค่าความหนาแน่นเนื้อ (True density) และค่าความเป็นทรงกลม (Sphericity) เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มลดลงแบบเป็นเชิงเส้น และเมื่อนำเมล็ดข้าวบาร์เลย์ที่มีความชื้นในระดับที่ต่างกันมาหาค่าสัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) กับพื้นผิววัสดุที่ต่างกัน 3 ชนิดคือ แผ่นยาง แผ่นไม้อัด และ แผ่นอลูมิเนียม พบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มที่เพิ่มขึ้นแบบเป็นเชิงเส้น 1.บทนำ ข้าวบาร์เลย์ (Barley) มีชื่อพฤกษศาสตร์คือ Hordeum vulgare L. เป็นพืชในวงศ์ POACEAE มีถิ่นกำเนิดในแถบซีเรียและอิรัก ซึ่งเชื่อว่าเป็นบริเวณที่มีการเพาะปลูกเป็นแห่งแรก ชาวกรีกและโรมันโบราณนิยมนำข้าวบาร์เลย์มาทำ ขนมปังและเค้ก ข้าวบาร์เลย์สามารถนำไปใช้ประโยชน์ได้หลายลักษณะ กว่า50%ของข้าวบาร์เลย์ที่ผลิตได้ทั่วโลกถูกนำไปใช้เป็นอาหารสัตว์รูปแบบต่างๆ ประมาณ 30%ของข้าวบาร์เลย์ที่ผลิตได้ถูกนำไปแปรรูปเป็นมอลต์เพื่อใช้ในอุตสาหกรรมการผลิตเบียร์ผลิตภัณฑ์แอลกอฮอล์ประเภทกลั่นและผลิตวิสกี้ อุตสาหกรรมผลิตภัณฑ์อาหาร เช่น อาหารเสริม ผลิตภัณฑ์ธัญชาติอบกรอบ และขนมอบ ในอุตสาหกรรมเคมีภัณฑ์ข้าวบาร์เลย์ถูกนำไปใช้ในอุตสาหกรรมการผลิตเคมีภัณฑ์ต่างๆเพื่อการแพทย์สิ่งทอและงานวิจัยทางวิทยาศาสตร์เช่น ผสมในอาหารสำหรับเชื้อโรค อีกทั้งยังมีคุณสมบัติในการช่วยลดความอ้วนได้เป็นอย่างดี โดยจากผลการศึกษาชิ้นใหม่ของสวีเดน ระบุว่า การทานข้าวบาร์เลย์ในมื้อเช้าช่วยลดความอ้วนที่มาจากการทานอาหารมื้อต่อๆ ไปของวันนั้นลงๆได้ ข้าวบาร์เลย์เป็นธัญพืชประเภทคาร์โบไฮเดรตที่มีเส้นใยอาหารสูง เป็นพืชตระกูลเดียวกับข้าวโดยมีลักษณะเป็นเมล็ดสีขาว เมล็ดมีลักษณะกลมรี ปลายเป็นร่องมีขนาดเล็กกว่าลูกเดือยแต่มีขนาดใหญ่กว่าข้าวสาลี ข้าวบาร์เลย์มีคุณค่าทางโภชนาการ (100 กรัม ) มีพลังงานทั้งหมด 352 kcal โดยข้าวบาร์เลย์ส่วนประกอบทางเคมีประกอบด้วย คาร์โบไฮเดรต 26% โปรตีน 9.9%เหล็ก 14% วิตามิน B6 13% โฟเลท 6%วิตามินK 3%แคลเซียม 3% วิตามิน B1 15% เหล็ก 11.1% (อ้างอิงจากhttp://nutritiondata.self.com/) เมื่อผู้ใหญ่ 20 คน ทานข้าวบาร์เลย์ในตอนเช้า เมล็ดธัญพืชจะลดการตอบสนองต่อน้ำตาลในเลือดลงร้อยละ 44 ในมื้อเที่ยง และร้อยละ 14 ในมื้อเย็น ยิ่งคุณมีระดับน้ำตาลในเลือดเพิ่มขึ้นน้อยเท่าไร ไขมันสะสมในร่างกายก็จะยิ่งน้อยลงเท่านั้น ต้องยกประโยชน์ให้กับปริมาณไฟเบอร์ชนิดละลายน้ำ ที่มีอยู่มากในข้าวชนิดนี้ ซึ่งใช้เวลาในการย่อยหลายชั่วโมง นอกจากนี้ ผู้เขียนรายงานวิจัยยังบอกว่าผลของเส้นใยอาหารที่มีต่อกลูโคสจะยังคงมีประสิทธิภาพอยู่ แม้จะถูกย่อยแล้วก็ตาม (อ้างอิงจาก www.plapra.exteen.com) การศึกษาสมบัติทางกายภาพของเมล็ดข้าวบาร์เลย์นี้มีความสำคัญต่อการออกแบบเครื่องมือ เครื่องจักรและกระบวนการสำหรับแปรรูปข้าวบาร์เลย์ เช่น การทำความสะอาด การคัดแยก การขนส่งลำเลียง การอบแห้ง ตลอดจนการเก็บรักษา และสามารถนำไปประยุกต์ใช้ในด้านอื่นๆ 2.วัสดุและวิธีการทดลอง 2.1 วิธีการเตรียมวัตถุดิบ เตรียมเมล็ดข้าวบาร์เลย์ที่หาซื้อจากห้างสรรพสินค้าที่แผนกธัญพืช โดยใช้ข้าวบาร์เลย์ ตราไร่ทิพย์ บรรจุถุงละ 500 กรัม นำมาคัดแยกเมล็ดที่ไม่สมบูรณ์ออก เลือกใช้เฉพาะเมล็ดที่สมบูรณ์และมีขนาดใกล้เคียงกัน 2.2 การหาค่าความชื้น ค่าความชื้นเริ่มต้นของตัวอย่างเมล็ดข้าวบาร์เลย์ สามารถหาได้จากการ แบ่งตัวอย่างออกเป็น 3 ชุดการทดลอง โดยชั่งน้ำหนักจากเครื่องชั่งไฟฟ้า ที่มีค่าความละเอียดอยู่ที่ 0.0001 g ใส่ลงในถาดฟรอยด์ที่เตรียมไว้ 1 ชุดการทดลองต่อ 1 ถาด จากนั้นนำตัวอย่างทั้ง 3 ชุด เข้าตู้อบลมร้อน (MEMMERT UFB 400 , ปะเทศเยอรมัน ) เพื่อหาความชื้นเริ่มต้น ที่อุณหภูมิ 105ºC เป็นเวลา 2 ชั่วโมง เมื่อครบระยะเวลาที่กำหนดแล้ว นำเมล็ดถั่วทั้ง 3 ชุด ไปพักไว้ที่ตู้ดูดความชื้น (Dessicator Northman รุ่น D36 , ) เพื่อรักษาระดับความชื้น จากนั้นนำตัวอย่างเมล็ดทั้ง 3 ชุด มาชั่งน้ำหนักทีละชุด เพื่อคำนวณหาความชื้นเริ่มต้นเฉลี่ย โดยหาจากสูตรการหาเปอร์เซ็นต์ความชื้นเริ่มต้นฐานเปียก (%Wb) ดังสมการ 2.3 การปรับความชื้น นำเมล็ดข้าวบาร์เลย์มาปรับความชื้นทั้งหมด 5 ระดับ ซึ่งอยู่ในช่วง2.52% ถึง 14.52% โดยแบ่งใส่ถุงพลาสติก ถุงละ 1,000 เมล็ด นำมาปรับความชื้น โดยความชื้นแรกเป็นความชื้นเริ่มต้นของเมล็ดข้าวบาร์เลย์ (ไม่ต้องปรับความชื้น) ปรับค่าความชื้นโดยการเติมน้ำสะอาด โดยสามารถคำนวณปริมาณน้ำที่ต้องเติมได้จากสมการ Mc คือ น้ำหนักน้ำที่ต้องการเติม (g) Wi คือ น้ำหนักเมล็ด (g) Mi คือ ความชื้นเริ่มต้น (%Wb) Mf คือ ความชื้นที่ต้องการ (%Wb) หลังจากเติมน้ำสะอาดครบทั้ง 4 ถุงแล้ว นำถุงมาปิดผนึก จากนั้นเก็บไว้ในตู้เย็นที่อุณหภูมิ 5 ºC เป็นเวลา 7 วัน โดยเขย่าถุงทุกๆ 2 วัน เพื่อให้ความชื้นของเมล็ดข้าวบาร์เลย์ภายในถุงแพร่กระจายได้อย่างทั่วถึง 2.4 ขนาด ใช้เวอร์เนียคาร์ลิปเปอร์ในการวัดเพื่อหาขนาดของเมล็ดข้าวบาร์เล่ย์เพื่อหาค่า ความยาว (L) ความกว้าง (W) และความหนา (T) โดยวัดเมล็ดจำนวน 100 เมล็ด ดังแสดงในรูป รูปที่1 ลักษณะการวัดเพื่อหาขนาดของเมล็ด 2.5 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต. (Geometric Mean..Diameter,GMD) คำนวณได้จากการนำค่า L,W,T ที่ได้จากการวัดขนาดความกว้าง ความยาว และความหนาของเมล็ดข้าวบาร์เลย์ จำนวน 100 เมล็ดนำค่าที่ได้ไปคำนวณในสูตร 2.6 ความเป็นทรงกลม (Sphericity) ความเป็นทรงกลมเป็นค่าที่ใช้บอกความใกล้เคียงความเป็นทรงกลมของเมล็ดข้าวบาร์เล่ย์ สามารถคำนวณได้จากสมการ 2.7 น้ำหนัก.1,000.เมล็ด.. (1,000..seeds..Mass) นำเมล็ดข้าวบาร์เลย์ที่ผ่านการคัดมาจำนวน 1,000 เมล็ด แล้วนำไปชั่งบนเครื่องชั่งดิจิตอล ที่มีค่าความละเอียดอยู่ที่ 0.0001 กรัม โดยแต่ละความชื้นต้องนำไปชั่งจำนวน 3 ครั้งเพื่อคำนวณหาค่าเฉลี่ย 2.8.พื้นที่ภาพฉาย.. (Projected..area) พื้นที่ภาพฉาย (projected area) หมายถึง พื้นที่ (area) ที่ได้จากการฉายภาพวัสดุลงบนแผ่นระนาบ โดยวิธีการวิเคราะห์ด้วยภาพถ่าย โดยนำภาพถ่ายที่ได้ไปวิเคราะห์ด้วยโปรแกรม Adobe Photoshop cs 5.5 2.9 ความหนาแน่นรวม (Bulk density , ρb) ความหนาแน่นรวม (bulk density) เป็นสมบัติทางกายภาพ (physical properties) ของวัสดุ หมายถึง ความหนาแน่น (density) ของวัสดุปริมาณมวล (bulk material) ทำการทดลองโดยกราเตรียมภาชนะทรงกระบอกที่ทราบปริมาตร และปรับระดับกรวยให้มีความสูงห่างจากแก้ว 25cm นำเมล็ดข้าวบาร์เลย์แต่ละความชื้นมากรอกใส่กรวย จากนั้นน้ำไม้บรรทัดมากดตรงกลางเพื่อนเกลี่ยเมล็ดที่เหนือขอบปากแก้วออก ความหนาแน่นรวมหาได้จากสูตร เมื่อ..Mb..คือ..น้ำหนักรวม-น้ำหนักภาชนะ (g) Vb..ใคือ..ปริมาตรภาชนะ (ml) 2.10 ความหนาแน่นเนื้อ (True density) ความหนาแน่นเนื้อ (solid density) อาจเรียกว่า ture density หรือ absolute density หมายถึง ความหนาแน่น (density) ของเนื้อวัสดุล้วนๆ ไม่รวมรูพรุน (pore) ในเนื้อวัสดุ หรือช่องว่างระหว่างชิ้นวัสดุ หากรวมช่องว่างระหว่างวัสดุ จะเป็นความหนาแน่นรวม (bulk density) วิธีการหาความหนาแน่นเนื้อ นำ Pychometer ขนาด 75 ml. ไปชั่งน้ำหนักและบันทึกค่า เติม เฮกเซน ลงใน Pychometer จนเต็ม นำไปชั่งน้ำหนักจากนั้นเทออก แล้วนำค่าที่ได้ไปคำนวณหาค่า ความหนาแน่นของเฮกเซน จากนั้นนำเมล็ดข้าวบาเลย์จำนวน 150 เมล็ดใส่ลงในขวด Pychometer แล้วนำไปชั่งน้ำหนักจดค่าที่ได้ เติมเฮกเซนลงไป นำไปชั่งน้ำหนักเพื่อหาค่า ความหนาแน่นของเมล็ดข้าวบาร์เลย์ แล้วนำปริมาตรของเมล็ดไปหาความหนาแน่นเนื้อได้จากสมการ เมื่อ..MS..คือ..น้ำหนักรวมของเมล็ด (g) V.....คือ..ปริมาตรต่อหนึ่งเมล็ด (ml) 2.11.ความพรุน.. (Porosity) ความพรุนคือค่าที่แสดงปริมาณช่องว่างที่มีอยู่เป็นอัตราส่วนระหว่างความหนาแน่นเนื้อต่อความหนาแน่นรวม ซึ่งสามารถคำนวณได้จากสมการ 2.12 ความเร็วสุดท้าย.. (Terminal..Velocity) ความเร็วสุดท้าย (terminal velocity) เป็นสมบัติทางกายภาพของวัสดุ ทางอากาศพลศาสตร์ (Aero dynamics) หาได้จากการนำเมล็ดข้าวบาร์เลย์ 1 เมล็ด วางลงบนตะแกรงของท่อลมแล้วปรับความเร็วลมเพิ่มขึ้นทีละน้อย จนเมล็ดสามารถลอยตัวได้อย่างอิสระภายในท่อลม แล้วนำเครื่องวัดความเร็วลมมาวัดค่าความเร็วลม จะได้ค่าความเร็วสุดท้ายของเมล็ดข้าวบาร์เลย์ 2.13 ค่าสัมประสิทธิ์ความเสียดทานสถิต (Static..Coefficient..of..friction) สัมประสิทธิ์ความเสียดทานสถิตคือค่าที่สามารถวัดได้จากการสุ่มเมล็ด มาจำนวน 10 เมล็ด แล้วนำมาวางบนพื้นผิววัสดุต่างกัน 3 ชนิด ได้แก่ พื้นผิวไม้อัด พื้นผิวอลูมิเนียม และพื้นผิวยาง ซึ่งพื้นผิวเหล่านี้ติดอยู่บนเครื่องวัดมุมเอียงจากนั้นให้ค่อยๆยกพื้นผิวด้านใดด้านหนึ่งขึ้นจนกระทั่งเมล็ดเริ่มกลิ้งไถลลงอย่างอิสระ อ่านค่ามุมที่เมล็ดเริ่มกลิ้งไถล โดยทำจนกระทั่งครบ 10 เมล็ด ทั้ง 3 พื้นผิว ในทุกๆความชื้น ซึ่งสามารถคำนวณหาสัมประสิทธิ์ความเสียดทานสถิตได้จาก รูปที่ 2 การวัดสัมประสิทธิ์ความเสียดทานสถิต ตารางที่ 1คุณสมบัติทางกายภาพของเมล็ด 3. ผลการทดลองและวิจารณ์ จากการศึกษาเปรียบเทียบคุณสมบัติทางกายภาพของเมล็ดข้าวบาร์เลย์ ที่ระดับความชื้นแตกต่างกัน 5 ระดับ 3.1 ขนาดของเมล็ดข้าวบาร์เลย์ รูปที่ 3 ความสัมพันธ์ระหว่างความกว้าง (W) กับปริมาณความชื้น รูปที่ 4 ความสัมพันธ์ระหว่างความยาว (L) กับปริมาณความชื้น รูปที่ 5 ความสัมพันธ์ระหว่างความหนา (T) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าขนาด (Size) ของเมล็ดข้าวบาร์เลย์ ทั้งด้านความกว้าง (W) ความยาว (L) และความหนา (T) ทั้ง 3 ด้าน จะมีค่าเพิ่มขึ้น (ขนาดเพิ่มขึ้น) เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) จากการทดลองสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.2 เส้นผ่านศูนย์กลางเฉลี่ย รูปที่6 ความสัมพันธ์ระหว่างเส้นผ่านศูนย์กลางเฉลี่ย (diameter) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นเส้นผ่านศูนย์กลางเฉลี่ย ของเมล็ดข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 3.57 ถึง 3.74 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.014x+3.3534 (R2= 0.995) เนื่องจากเมื่อปรับความชื้น โมเลกุลน้ำจะเข้าไปแทรกตัวอยู่ภายในเมล็ดทำให้เมล็ดมีขนาดใหญ่ขึ้นซึ่งสังเกตได้จากความกว้างและความหนามีค่าเพิ่มขึ้น (จากกราฟรูป3, 4) ดังนั้นจึงทำให้เส้นผ่านศูนย์กลางเฉลี่ยเพิ่มขึ้นด้วย ประโยชน์ของเส้นผ่านศูนย์กลางเฉลี่ยในทางอุตสาหกรรมอาหารมีความสำคัญในการออกแบบตะแกรงคัดขนาด โดยหากต้องการวัตถุดิบที่มีขนาดพอเหมาะสำหรับการแปรรูปอาหาร เราก็ออกแบบตะแกรงที่มีรูตะแกรงในขนาดที่ต้องการ หากวัตถุดิบมีขนาดเล็กเกินไปเมื่อตะแกรงเคลื่อนที่ก็จะหล่นลงไปในตะแกรงและถูกคัดทิ้งไป จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของi.Yalcm, C.Ozarslan, T.Akba (2005) ซึ่งศึกษาเมล็ดถั่ว (Pisum sativum) 3.3 ความเป็นทรงกลม รูปที่7 ความสัมพันธ์ระหว่างความเป็นทรงกลม (Sphericity) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความเป็นทรงกลม (Sphericity) ของเมล็ดข้าวบาร์เลย์จะมีแนวโน้มเป็นเส้นตรงโดยลดลงจาก 0.7622 ถึง 0.7535 (แปรผกผัน) ซึ่งมีสมการความสัมพันธ์: y=0.000x+0.760 (R2=0.974 ) ซึ่งจากผลการทดลองทำให้เราทราบว่าความเป็นทรงกลมลดลงเมื่อความชื้นเพิ่มขึ้น เป็นเพราะเมล็ดข้าวบาร์เลย์มีการขยายตัวหลังปรับความชื้นในด้วนยาวมากกว่าด้านกว้าง โดยค่าความเป็นทรงกลม ของแต่ละเมล็ด แต่ละสายพันธุ์ อาจจะมีการขยายตัวในทิศทางที่แตกต่างกันทำให้ค่าความเป็นทรงกลมมีค่ามากขึ้น หรือลดลงแล้วแต่เมล็ดที่ใช้ในการทดลอง ประโยชน์ของความเป็นทรงกลมในทางอุตสาหกรรมอาหารมีความสำคัญในการออกแบบการลำเลียงวัสดุ ระหว่างการเตรียมวัตถุดิบ และการแปรรูปอาหาร โดยวัตถุดิบที่มีความเป็นทรงกลมมาก มีแนวโน้มจะเคลื่อนที่ด้วยการกลิ้งบนพื้นเอียงส่วนวัตถุดิบที่มีความกลมน้อยจะเคลื่อนที่ด้วยการไถล ไปกับพื้น จากการทดลองสอดคล้องกับงานวิจัยของ Ibrahim Yalcm (2005) ซึ่งศึกษาเมล็ดผักชี 3.4 พื้นที่ภาพฉาย (Projected Area) รูปที่8 ความสัมพันธ์ระหว่างพื้นที่ภาพฉาย projected areaกับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นพื้นที่ภาพฉายของเมล็ดข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 0.1218 ถึง 0.1998 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.007x+0.117 (R2=0.667 ) หลังจากปรับความชื้นเมล็ดข้าวบาร์เลย์จะขยายใหญ่ขึ้นเนื่องจากโมเลกุลน้ำได้เข้าไปแทรกตัว เมื่อนำเมล็ดมาหาค่าพื้นที่ภาพภายจึงพบว่าเมล็ดข้าวบาร์เลย์จะมีพื้นที่ภาพฉายเพิ่มขึ้นเมื่อเพิ่มปริมาณความชื้นตามวิธีการข้างต้น พื้นที่ภาพฉายมีประโยชน์ในการคัดขนาด การคัดคุณภาพของวัตถุดิบ รวมทั้งผลิตภัณฑ์ทางอาหารโดยการวิเคราะห์ด้วยภาพถ่าย จากการทดลองสอดคล้องกับงานวิจัยของMajdiA. Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.5 น้ำหนัก 1,000 เมล็ด (1,000 Seeds Mass) รูปที่9 ความสัมพันธ์ระหว่างน้ำหนัก 1,000 เมล็ด (1,000 seeds Mass) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นน้ำหนักเมล็ดของเมล็ดข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 37.1 ถึง 41.57 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.384x+36.08 (R2=0.974 ) หลังจากปรับความชื้นเมล็ดข้าวบาร์เลย์จะขยายใหญ่ขึ้นและน้ำหนักจะเพิ่มขึ้นตามไปด้วยเนื่องจากมีมวลน้ำออสโมซิสเข้าไปภายในเมล็ด น้ำหนัก 1,000 เมล็ดมีผลในการการออกแบบขนาดของบรรจุภัณฑ์ไซโล (silo) สำหรับเก็บอาหาร การออกแบบการลำเลียงวัสดุ ระหว่างการเตรียมวัตถุดิบ และการแปรรูปอาหาร เป็นต้น จากการทดลองสอดคล้องกับงานวิจัยของISIK UNAL (2007) ซึ่งศึกษาเมล็ดถั่วขาวและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.6ความหนาแน่นเนื้อ (True density) รูปที่ 10 ความสัมพันธ์ระหว่างความหนาแน่นเนื้อ จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความหนาแน่นเนื้อของเมล็ดข้าวบาร์เลย์จะมีแนวโน้มเป็นเส้นตรงโดยลดลงจาก 1.5236 ถึง 1.4298 (แปรผกผัน) ซึ่งมีสมการความสัมพันธ์: y=0.007x+1.530 (R2=0.842 ) เมื่อปรับความชื้นน้ำที่ออสโมซิสเข้าไปมากขึ้น ดังนั้นอัตราระหว่างมวลน้ำกับมวลเนื้อของเมล็ดจะลดลงเพราะเราใส่น้ำเข้าไปในเมล็ดแต่มวลเนื้อยังคงเท่าเดิม ความหนาแน่นของเมล็ดจึงลดลง ความหนาเนื้อสามารถนำไปใช้เพื่อคำนวณหาค่าความพรุน (porosity) ซึ่งแสดงปริมาตรของที่ว่างภายในกองวัสดุ และสามารถในการออกแบบเครื่องจักรในการใช้ในงานอุตสาหกรรมต่างๆเช่น ออกแบบ เครื่องลำเลียง ไซโลเก็บอาหาร และการเลือกที่จะให้บรรจุภัณฑ์ให้เหมาะสมกับวัสดุ จากการทดลองสอดคล้องกับงานวิจัยของUzarslan (2002) ซึ่งศึกษาเมล็ดฝ้ายและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.7 ความหนาแน่นรวม (Bulk density) รูปที่11ความสัมพันธ์ระหว่างความหนาแน่นรวม (Bulk density) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความหนาแน่นรวมของเมล็ดข้าวบาร์เลย์จะมีแนวโน้มเป็นเส้นตรงโดยลดลงจาก 0.8726 ถึง 0.7685 (แปรผกผัน) ซึ่งมีสมการความสัมพันธ์: y=0.009x+0.900 (R2=0.939 ) เมื่ออัตราระหว่างมวลน้ำกับมวลเนื้อของเมล็ดจะลดลงเพราะเราใส่น้ำเข้าไปในเมล็ดแต่มวลเนื้อยังคงเท่าเดิม ดังนั้นความหนาแน่นรวมจึงลดลงเมื่อปริมาณน้ำมากขึ้น ค่าความหนาแน่นรวมสามารถใช้ในด้านอุตสาหกรรมเพื่อการออกแบบขนาดของบรรจุภัณฑ์ไซโล (silo) สำหรับเก็บอาหาร เป็นต้น นอกจากนั้นความหนาแน่นรวมยังสามารถนำไปใช้เพื่อคำนวณหาค่าความพรุน (porosity) ซึ่งแสดงปริมาตรของที่ว่างภายในกองวัสดุ จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของi.Yalcm, C.Ozarslan, T.Akba (2005) ซึ่งศึกษาเมล็ดถั่ว (Pisum sativum) 3.8 ปริมาตรต่อเมล็ด (Volume per seed) รูปที่ 12 ความสัมพันธ์ระหว่างปริมาตรต่อเมล็ด (Volume per seed) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นปริมาตรต่อเมล็ดของข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 0.0187 ถึง 0.0256 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.0006x+0.0155 (R2=0.86 ) เนื่องจากเมื่อปรับความชื้น โมเลกุลน้ำจะเข้าไปแทรกตัวอยู่ภายในเมล็ดทำให้เมล็ดมีขนาดใหญ่ขึ้นปริมาตรของเมล็ดก็จะเพิ่มขึ้นซึ่งสังเกตได้จากความกว้างและความยาวมีค่าเพิ่มขึ้น ประโยชน์ของปริมาตรของเมล็ดในทางอุตสาหกรรมใช้ในการกำหนดขนาดเครื่องบรรจุ เครื่องลำเลียง และไซโล เป็นต้น จากการทดลองสอดคล้องกับงานวิจัยของISIK UNAL (2007) ซึ่งศึกษาเมล็ดถั่วขาวและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.9 ความพรุน (Porosity) รูปที่ 13 ความสัมพันธ์ระหว่างความพรุน (Porosity) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความพรุนของข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 72.7081 ถึง 46.2512 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.375x+41.07 (R2=0.828 ) ความพรุนคือสัดส่วนช่องว่างที่มีอยู่ในกองวัสดุปริมาณมวล หรือ อัตราส่วนของปริมาตรช่องว่างหรืออากาศในกองวัสดุหรือในชิ้นวัสดุนั้นต่อปริมาตรรวมทั้งหมด ดังนั้นเมื่อปรับความชื้นปริมาณช่องว่างเพิ่มขึ้นจึงทำให้ ความพรุนมีค่าเพิ่มขึ้นตามการเพิ่มขึ้นของปริมาณความชื้น ความพรุนนำไปใช้ในอุตสาหกรรมในการประเมินแนวโน้มในการเน่าเสียของเมล็ดและการลำเลียงไปตามเครื่องจักร โดยเมล็ดที่มีความพรุนมากมีแนวโน้มที่จะมีน้ำหนักเบากว่าและลำเลียงสะดวกกว่า จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของi.Yalcm, C.Ozarslan, T.Akba (2005) ซึ่งศึกษาเมล็ดถั่ว (Pisum sativum) 3.10 ความเร็วสุดท้าย (Terminal Velocity) รูปที่ 14 ความสัมพันธ์ระหว่างความเร็วสุดท้าย (Terminal Velocity) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความเร็วสุดท้ายของข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 9.85 ถึง 12.59 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.195x+10.39 (R2=0.544 ) ปัจจัยที่มีผลต่อค่าความเร็วสุดท้าย คือ ขนาด, รูปร่าง, พื้นที่ภาพฉาย ดังนั้นเมื่อปัจจัยเหล่านี้เพิ่มขึ้นตามการปรับระดับความชื้นจึงทำให้ความเร็วสุดท้ายเพิ่มขึ้นตาม โดยเราใช้ประโยชน์จากความเร็วสุดท้าย (TerminalVelocity) ในขั้นตอนการเตรียมวัตถุดิบ เช่น การทำความสะอาดด้วยลม เพื่อการคัดแยก การแยกขนาด รวมทั้งการทำแห้งด้วยวิธี Fluidized bed drier ,Pneumatic drier และจากผลการทดลองความสัมพันธ์ระหว่างความเร็วสุดท้ายกับปริมาณความชื้น ได้ผลการทดลองเป็นกราฟเส้นตรง คือความเร็วสุดท้ายเพิ่มขึ้น เมื่อความชื้นเพิ่มขึ้น จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.11 สัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) รูปที่ 15 ความสัมพันธ์ระหว่างสัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าสัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) ของเมล็ดข้าวบาร์เล่ย์จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) โดยพื้นไม้เพิ่มขึ้นจาก 0.4287 ถึง 0.7382 พื้นอลูมิเนียมเพิ่มขึ้นจาก 0.5032 ถึง 0.6426 โดยพื้นยางเพิ่มขึ้นจาก 0.5776 ถึง 0.8399ซึ่งมีสมการความสัมพันธ์: ไม้ y=0.014x+0.062 ( ) อลูมิเนียม y=0.018x+0.446 ( ) ยาง y=0.009x+0.495 ( ) สัมประสิทธิ์ความเสียดทานเพิ่มขึ้นเนื่องจากเมื่อปรับความชื้นจะทำให้มวลของเมล็ดข้าวบาร์เล่ย์มาค่ามากขึ้น เนื่องจากสัมประสิทธิ์ขึ้นกับมวลและแรงโน้มถ่วงของโลก เมื่อมวลมากจะทำให้สัมประสิทธิ์ความเสียดทานเพิ่มขึ้นด้วยส่วนแรงโน้มถ่วงมีค่าคงที่ ประโยชน์ทางด้านอุตสาหกรรมคือสัมประสิทธิ์ความเสียดทานสถิตใช้ในการออกแบบเครื่องลำเลียงวัตถุดิบให้สามารถลำเลียงได้สะดวก รวดเร็วและง่ายมากยิ่งขึ้น จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababa
สมบัติทางกายภาพและเปอร์เซ็นต์การพองตัวของเมล็ดสำรอง
สมบัติทางกายภาพและเปอร์เซ็นต์การพองตัวของเมล็ดสำรอง Experiments for the physical properties of the grains and the percentage of inflated Scaphium macropodum Beaum. สาขาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ณัฐพล จันทร์เศรษฐี , รักษ์ธรรม แสงจันดา , อุกฤษฏ์ ใจงาม , วสันต์ อินทร์ตา บทคัดย่อ การศึกษาสมบัติทางกายภาพของเมล็ดสำรอง (Scaphium macropodum Beaum) พบว่า [ ขนาด (size) (ความยาว (L) ความหนา (M) ความกว้าง (W) ] มีค่าอยู่ในช่วง 18.15-31.00 mm , 11.30-19.45 mm , 12.00-17.20 mm ตามลำดับ ค่าความเป็นทรงกลม (Sphericity) มีค่าอยู่ในช่วง 57.29-87.92 แต่ในทางกลับกันค่าความหนาแน่นรวม (Bulk density) ในส่วนของเมล็ดขนาดเล็กมีค่าอยู่ในช่วง 0.36-0.72 g/ml ในส่วนของเมล็ดขนาดกลางมีค่าอยู่ในช่วง 0.53-0.69 g/ml และในส่วนของเมล็ดขนาดใหญ่มีค่าอยู่ในช่วง 0.5-0.91 g/ml เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric Mean Diameter , GMD) มีค่าอยู่ช่วง 14.42-20.87mm และเมื่อนำไปแช่น้ำตามระยะเวลาต่างๆเป็นเวลา 1 ชั่วโมง , 2 ชั่วโมง , 3 ชั่วโมง , 4 ชั่วโมง เมื่อพล็อตกราฟค่ากราฟที่ได้มีแนวโน้มเพิ่มขึ้นแบบเชิงเส้น ค่าเฉลี่ยพื้นที่ภาพฉายของเมล็ดขนาดเล็ก (<23 mm) มีค่าอยู่ในช่วง 14.53-22.73 cm2 ค่าเฉลี่ยพื้นที่ภาพฉายของเมล็ดขนาดกลาง (23-25 mm) มีค่าอยู่ในช่วง 13,89-18.71 cm2 และค่าเฉลี่ยพื้นที่ภาพฉายของเมล็ดขนาดใหญ่ (>25 mm) มีค่าอยู่ในช่วง 13.56-19.95 cm2 พบว่า เมื่อพล็อตกราฟพื้นที่ภาพฉายกับเวลากราฟมีแนวโน้มเป็นเส้นตรง 1.บทนำ ลูกสำรอง (Malva nut) มีชื่อวิทยาศาสตร์ว่า [Scaphium scaphigerum (G. Don) Guib and Planch] รวมสายพันธุ์อื่นอีกเช่น Scaphium acropodumBeumee andSterculia lychnophoraHance. ส่วนพันธุ์ caphium scaphigerum มีการเจริญเติบโตได้ดีทางภาคตะวันออกของประเทศไทย ประเทศเวียดนาม ประเทศจีน ประเทศมาเลเชีย และประเทศอินโดนีเซีย ลูกสำรองเป็นไม้ยืนต้น ชอบขึ้นในป่าดงดิบที่มีความชื้นสูง ลำต้นตรงและสูงฉะลูดประมาณ 30-40 เมตร ผลแห้งของลูกสำรองเมื่อแก่จะมีสีน้ำตาล ลักษณะเหี่ยวแห้งและมีผิวขรุขระ เปลือกหุ้มเมล็ดชั้นนอกมีสารเมือก (Mucilage) จำนวนมาก ซึ่งจะพองตัวได้ดีในน้ำ มีความสามารถในการดูดซับน้ำถึง 40-45 มิลลิลิตร/กรัม ทำให้เกิดเป็นเจล (Gel) หรือเป็นวุ้นได้โดยไม่ต้องอาศัยความร้อน และมีการน้ำมาใช้เป็นยาแผนโบราณมาเป็นเวลานาน นอกจากนี้ในประเทศจีนยังใช้เป็นยาแบบดั้งเดิมเพื่อป้องกันการอักเสบและท้องผูก ในปัจจุบันมีการนำเมล็ดสำรองมาใช้เป็นเครื่องดื่มรสหวานเพื่อประโยชน์ต่อสุขภาพเพื่อช่วยลดน้ำหนักของร่างกาย แต่ก็ยังไม่ค่อยได้รับความนิยมเพราะขาดข้อมูลที่ใช้เพื่อแสดงประโยชน์ต่อสุขภาพของลูกสำรอง วัตถุประสงค์ของการทดลองครั้งนี้เพื่อศึกษาว่าเมล็ดสำรองขนาดไหนให้เนื้อเจลมากที่สุด เวลาการแช่เพื่อให้ได้เนื้อเจลมากที่สุด และหาลักษณะทางกายภาพของเมล็ดสำรอง ความชื้น เปอร์เซ็นต์การพองตัว พื้นที่ภาพฉายและเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต 2. วัตถุดิบและวิธีการทดลอง 2.1 การเตรียมวัตถุดิบ เมล็ดสำรอง (Scaphium macropodum Beaum) เป็นเมล็ดที่ผู้ทำการศึกษาได้ซื้อมาจากร้านสมุนไพรแห่งหนึ่ง ในเขตลาดกระบังกรุงเทพมหานคร ตัวอย่างนั้นไม่ได้ทำการคัดเลือกเมล็ดมาและบรรจุอยู่ในถุงถุงละ 3 ขีดและเก็บไว้ที่อุณหภูมิห้อง เมื่อทำการทดลองจึงต้องแยกเมล็ดนำเมล็ดที่เป็นรูแยกออกและเมล็ดที่ไม่มีรูจะเก็บไว้เพื่อศึกษา โดยขั้นตอนการเตรียมโดยแยกเมล็ดที่มีเส้นผ่านศูนย์กลาง < 23 mm คือเมล็ดขนาดเล็กเส้นผ่านศูนย์กลาง 23-25 mm คือเมล็ดขนาดกลาง และเส้นผ่านศูนย์กลาง >25 mm คือเมล็ดขนาดใหญ่ 2.2 สมบัติทางกายภาพ 2.2.1 การหาขนาด (Size) โดยใช้เวอร์เนียคาร์ลิปเปอร์วัดขนาดเมล็ดสำรอง (Scaphium macropodum Beaum) ซึ่งประกอบด้วย ความยาว (L) ความกว้าง (W) ความหนา (M) 2.2.2เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric Mean Diameter , GMD) คำนวณหาขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต สามารถคำนวณได้โดยการนำค่า W,M,L ที่ได้จากการวัดขนาด (Size) ของเมล็ดสำรอง จำนวน 100 เมล็ด 2.2.3 ความเป็นทรงกลม (Sphericity , ) ความเป็นทรงกลมเป็นค่าที่ใช้บอกความใกล้เคียงความเป็นทรงกลมของเมล็ดสำรอง (Scaphium macropodum Beaum) จำนวน 100 เมล็ด ซึ่งถ้าเมล็ดมีความกลมมากที่สุดจะมีค่าความเป็นทรงกลมเท่ากับ 1 สามารถคำนวณได้จากสมการ จากตารางเป็นค่าเฉลี่ยความเป็นทรงกลมจำนวน 100 เมล็ด 2.3 เปอร์เซ็นการพองตัว (%) ค่าเปอร์เซ็นการพองตัวคือเปอร์เซ็นต์การพองตัวของลูกสำรองหลังจากแช่น้ำโดยมี เมล็ด+เนื้อเจล+เปลือก จากกราฟ ในชั่วโมงที่ 1 จะเห็นได้ว่าลูกสำรองขนาดกลางจะมีเปอร์เซ็นการพองตัวมากที่สุดรองลงมาจะในส่วนเป็นขนาดใหญ่และขนาดเล็กตามลำดับ ในส่วนของชั่วโมงที่ 2 ขนาดเล็กจะมีเปอร์เซ็นการพองตัวมากที่สุด รองลงมาจะเป็นในส่วนของขนาดกลางและขนาดใหญ่ตามลำดับ ในส่วนของชั่วโมงที่ 3 ขนาดเล็กจะมีเปอร์เซ็นการพองตัวมากที่สุด รองลงมาจะเป็นในส่วนของขนาดใหญ่และขนาดกลาง ตามลำดับ และในส่วนของชั่วโมงที่ 4 ขนาดกลางจะมีเปอร์เซ็นการพองตัวมากที่สุด รองลงมาจะเป็นในส่วนของขนาดเล็กและขนาดใหญ่ ดังนั้นจากการทดลองขนาดของเมล็ดที่ให้เปอร์เซ็นการพองตัวเป็นผลที่น่าพอใจมากที่สุด คือเมล็ดสำรองขนาดกลาง (23-25mm) และถ้าต้องการเนื้อเจลมากที่สุดซึ่งเกิดได้จากการพองตัวมากที่สุดคือเมล็ดในขนาดกลางที่ระยะในการแช่ของเมล็ดเป็นเวลา 4 ชั่วโมง ในการพองตัวของเมล็ดในแต่ละขนาดต่างๆนั้นขนาดของเมล็ดนั้นไม่ได้มีผลว่าขนาดของเมล็ดที่ใหญ่จะมีเปอร์เซ็นพองตัวมากกว่าขนาดเล็ก ซึ่งในการพองตัวของเจลในแต่ละเมล็ดนั้นขึ้นอยู่กับคุณภาพของเมล็ดนั้นด้วย ซึ่งบางเมล็ดจะมีการพองตัวของเนื้อเจลได้ไม่เท่ากัน ดังนั้นถ้าจะต้องการเนื้อเจลที่มาก สิ่งที่ควรทำก่อนนำไปแช่คือการคัดเลือกคุณภาพเมล็ดเพื่อที่จะได้รับเมล็ดที่มีคุณภาพ ดังเช่นการมีรูพรุนของเมล็ด ความสมบูรณ์ของเมล็ด เป็นต้น การดูดเอาน้ำที่แช่มาเข้าไปในเนื้อเจลที่เป็นส่วนของเปลือกของเมล็ดสำรอง จากกราฟเป็นกราฟที่ไม่ได้แยกขนาดตามเมล็ด ซึ่งเป็นการนำค่าเฉลี่ยจากการทดลองซ้ำทั้งหมด 3 ชุดและนำไปแช่น้ำตามชั่วโมงที่ได้กำหนดไว้คือ 1 , 2 , 3 และ 4 ชั่วโมงตามลำดับ ซึ่งจากกราฟที่ได้เป็นเส้นตรงจะได้เป็นเปอร์เซ็นการพองตัวเพิ่มขึ้นตามชั่วโมงที่เพิ่มขึ้นหรือการพองตัวแปรผันตรงกับชั่วโมงในการแช่ ซึ่งจากกราฟในชั่วโมงที่ 4 จะได้เปอร์เซ็นการพองตัวมากที่สุด การที่เมล็ดสำรองพองตัวนั้นเกิดจากการดูดเอาน้ำที่แช่มาเข้าไปในเนื้อเจลที่เป็นส่วนของเปลือกของเมล็ดสำรอง จากกราฟในชั่วโมงที่ 1 จะเห็นได้ว่าลูกสำรองขนาดกลางจะมีเปอร์เซ็นเจลมากที่สุดรองลงมาจะในส่วนเป็นขนาดใหญ่และขนาดเล็กตามลำดับ ในส่วนของชั่วโมงที่ 2 ขนาดเล็กจะมีเปอร์เซ็นเจลมากที่สุด รองลงมาจะเป็นในส่วนของขนาดกลางและขนาดใหญ่ตามลำดับ ในส่วนของชั่วโมงที่ 3 ขนาดเล็กจะมีเปอร์เซ็นเจลมากที่สุด รองลงมาจะเป็นในส่วนของขนาดใหญ่และขนาดกลาง ตามลำดับ และในส่วนของชั่วโมงที่ 4 ขนาดกลางจะมีเปอร์เซ็นเจลมากที่สุด รองลงมาจะเป็นในส่วนของขนาดเล็กและขนาดใหญ่ ซึ่งถ้าเปรียบเทียบกับการพองตัวแล้วความเปอร์เซ็นของเจลมีการเรียงลำดับเหมือนกับเปอร์เซ้นการพองตัว จากกราฟจะเห็นได้ว่าเมล็ดสำรองในขนาดกลางนั้นมีเปอร์เซ็นเจลมากที่สุดในเวลาที่ชั่วโมงที่ 4 2.4 ความหนาแน่น (bulk density) ได้นำเมล็ดที่แยกเรียบร้อยแล้วนำมาแบ่งเป็นกลุ่ม 3 กลุ่มคือ กลุ่มขนาดเล็ก กลุ่มขนาดกลาง และกลุ่มขนาดใหญ่ และจากนั้นนำบรรจุใส่แก้วพลาสติกเป็นจำนวน 10 กรัม โดยจะแบ่งทำเป็น 3 ชุด ซึ่งแต่ละชุดจะมีการแช่ไว้ 1 ชั่วโมง 2 ชั่วโมง 3 ชั่วโมง และ 4 ชั่วโมง ตามลำดับ ซึ่งเมื่อแช่ครบตามเวลาที่กำนดแล้วนำไปตากแห้งเป็นระยะเวลาประมาณ 4 นาที และนำไปชั่งบนเครื่องชั่งดิจิตอลจะได้นำหนักเมล็ดและน้ำหนักเจลรวมกันจากนั้นทำการคัดเจลและเมล็ดแยกออกจากกันแล้วนำเจลไปบรรจุในแก้วปริมาตร 65 ml จะได้ค่า bulk density ซึ่งคำนวณหาได้จากสมการ จากกราฟแสดงให้เห็นได้ว่าค่า bulk density มีค่าเพิ่มมากขึ้นซึ่งแปรผันตามเวลาและในชั่วโมงที่ 4 จะมีค่า bulk density มากที่สุด จากกราฟค่า bulk density ในชั่วโมงที่ 1 และ 2 มีการเรียงลำดับค่า bulk density เหมือนกับค่าเปอร์เซ็นการพองตัวและค่าเปอร์เซ็นต์เจล แต่ในส่วนของชั่วโมงที่ 3 และ 4 ค่าbulk density และค่าเปอร์เซ็นต์การพองตัวและค่าเปอร์เซ็นต์เจลมีการเรียงลำดับไม่เหมือนกัน ซึ่งในชั่วโมงที่ 3 เมล็ดขนาดกลางมีค่า bulk density มากที่สุดและในชั่วโมงที่ 4 ขนาดใหญ่มีค่า bulk density มากที่สุดซึ่งอาจจะเกิดจากสาเหตุของการดูดน้ำของแต่ละเมล็ดซึ่งขนาดใหญ่อาจจะมีความสามารถในการดูดน้ำมากที่สุดก็ต่อเมื่อเวลามากที่สุดและในส่วนของขนาดกลางในชั่วโมงที่ 3 มีค่า bulk density มากกว่าขนาดใหญ่นั้นอาจเพราะในช่วงชั่วโมงที่ 1.2.3 นั้นขนาดใหญ่อาจมีความสามารถในการดูดน้ำได้ไม่เต็มที่นักและเมื่อในชั่วโมงที่ 4 จึงจะแสดงการดูดน้ำที่มากที่สุด 2.2.4 พื้นที่ภาพฉาย (Projected area) พื้นที่ภาพฉาย เป็นค่าที่บ่งบอกพื้นที่ของเมล็ดสำรอง จากการเปรียบเทียบอัตราส่วนพิกเซล ทำโดยการนำเมล็ดสำรอง (Scaphium macropodum Beaum) ที่ได้รับการคัดแยกแล้วไปแช่น้ำตามเวลาที่กำหนดไว้ หลังจากแช่ตามเวลาที่กำหนดไว้เมล็ดสำรองจะพองตัวเป็นเจล แล้วนำเมล็ดสำรองไปตากแห้งจนเสด็จน้ำไป หลังจากนั้นนำไปวางบนกระดาษกราฟที่มีการวาดรูปสี่เหลี่ยมจัตุรัสขนาด 1 cm x 1 cm ไว้ที่มุมด้านใดด้านหนึ่งของกระดาษและมีพลาสติกใส่วางอยู่เพื่อป้องกันกระดาษกราฟเปียก จากนั้นถ่ายรูปจากมุมสูง นำรูปภาพที่ได้มาหาสัดส่วนพื้นที่ (cm2) และพื้นที่ pixel ระหว่างรูปสี่เหลี่ยมจัตุรัสและเมล็ดสำรอง (Scaphium macropodum Beaum) โดยใช้โปรแกรม PhotoshopCS5Portable สามารถหาได้จากสมการที่ จากกราฟจะเห็นได้ว่าในชั่วโมงที่ 4 มีพื้นที่ภาพฉายมากที่สุด ค่าที่รองลงมาคือในชั่วโมงที่ 1 , 3 และ 2 ตามลำดับสาเหตุที่ชั่วโมงที่ 4 มีพื้นที่ภาพฉายมากที่สุดนั้นเกิดจากการพองตัวของเจลมากและมีขนาดใหญ่จึงมีพื้นที่ภาพฉายมากที่สุดและในส่วนของชั่วโมงที่ 1 รองลงมานั้นสาเหตุเกิดจากจำนวนเมล็ดที่มากกว่าในชั่วโมงอื่นๆจึงมีค่าพื้นที่ภาพฉายรองลงมาจากชั่วโมงที่ 4 จากกราฟในชั่วโมงที่ 1 และ 2 เมล็ดขนาดเล็กมีพื้นที่ภาพฉายมากที่สุดเนื่องจากจำนวนเมล็ดที่มากกว่าขนาดกลางและขนาดใหญ่ ในส่วนของชั่วโมงที่ 3 ขนาดกลางจะเริ่มมีพื้นที่ภาพฉายมากกว่าขนาดเล็ก เนื่องจากเวลาเพิ่มขึ้นการพองตัวของเจลจึงมากขึ้นและในส่วนของชั่วโมงที่ 4 ขนาดเมล็ดที่ใหญ่มีพื้นที่ภาพฉายมากที่สุดอ้างอิงจากกราฟความสัมพันธ์ระหว่าง bulk density กับ เวลาซึ่งยิ่งชั่วโมงเยอะขึ้นจีงมีความสามารถในการดูดน้ำมากที่สุด 3.สรุปผลการทดลอง จากการทดลองพบว่าเปอร์เซ็นต์การพองตัวของขนาดกลางในชั่วโมงที่ 4 มีค่ามากที่สุดเช่นเดียวกับเปอร์เซ็นต์เจลซึ่งขนาดกลางในชั่วโมงที่ 4 มีค่ามากที่สุด ในส่วนของไม่ได้คัดขนาดของเมล็ดในชั่วโมงที่ 4 ของการแช่นั้นมีค่าเปอร์เซ็นต์เจลมากที่สุด สำหรับค่า bulk density สำหรับในส่วนของที่ไม่ได้คัดเมล็ดนั้นในการแช่ 4 ชั่วโมงมีค่ามากที่สุดและในส่วนของการคัดเมล็ดพบว่าขนาดใหญ่ในชั่วโมงการแช่ 4 ชั่วโมงมีค่ามากที่สุดเช่นกัน สำหรับพื้นที่ภาพฉายสำหรับการไม่คัดเมล็ดนั้นในชั่วโมงที่ 4 มีค่ามากที่สุดและในชั่วโมงที่ 2 ของการคัดเมล็ดพบว่าขนาดเมล็ดเล็กมีพื้นที่ภาพฉายมากที่สุดอเป็นเพราะจำนวนเมล็ดมีมากกว่าส่วนของขนาดเมล็ดอื่นๆและในการพองตัวของเมล็ดในแต่ละครั้งของการทดลองนั้นขึ้นอยู่กับการคัดเลือกเมล็ดที่จะนำไปแช่ในแต่ละชั่วโมงต่างๆด้วย ถ้าหากเมล็ดที่นำไปแช่มีความไม่สมบูรณ์ของเมล็ดเช่น การมีรูพรุน ความไม่สมบูรณ์แบบของเมล็ด เป็นต้น จะทำให้ได้เปอร์เซ็นต์การพองตัวที่ต่ำลงซึ่งจะได้เจลออกมาได้ไม่ดีนัก
ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก
ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก ( Effect of moisture content on some physical properties of sunflower seed and kernel ) สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง เกียรติศักดิ์ งามวิริยะประเสริฐ ณฐกฤช จารุวัฒนาสกุล ณัฐกิตติ์ กิติวงค์ วสันต์ อินทร์ตา บทคัดย่อ จากการศึกษาผลของความชื้นต่อสมบัติทางกายภาพของเมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก มีจุดประสงค์เพื่อศึกษาเกี่ยวกับสมบัติด้านต่างๆ ของเมล็ดทานตะวันเมื่อความชื้นมีค่าเปลี่ยนไป โดยเมื่อทำการวัดค่าโดยรวม เมล็ดทานตะวันแบบกะเทาะเปลือกจะมีค่าเฉลี่ยของ ความยาว,ความกว้าง,ความหนา,ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราคณิต,ความเป็นทรงกลม,ความหนาแน่นเนื้อ,ความหนาแน่นรวม,ความพรุน รวมทั้ง พื้นที่ภาพฉาย,ปริมาตรต่อหนึ่งเมล็ด,สัมประสิทธิ์แรงเสียดทานสถิตย์ของผิวไม้ อะลูมิเนียม ยาง และ ความเร็วสุดท้ายที่ความชื้นเริ่มต้น (1.15% wb.) คือ 13.41 mm,5.59 mm,2.37 mm,5.6 mm,0.41,1.177 g/cm3,0.602 g/cm3, 48.88%,0.535cm2,1.575cm3,0.6751 ,0.6236 ,0.8557, 8.27 m/s ตามลำดับและพบว่าเมล็ดทานตะวันแบบไม่กะเทาะเปลือกจะมีค่าเฉลี่ยของค่าความยาว,ความกว้าง,ความหนา,ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราคณิต , ความเป็นทรงกลม ความหนาแน่นเนื้อ ,ความหนาแน่นรวม ความพรุน รวมทั้ง พื้นที่ภาพฉาย,ปริมาตรต่อหนึ่งเมล็ด สัมประสิทธิ์แรงเสียดทานสถิตย์ของ ผิวไม้ อะลูมิเนียม ยาง และ ความเร็วสุดท้ายที่ความชื้นเริ่มต้น (2.25% wb.) คือ 20.39mm,9.41mm, 4.65mm, 9.6mm, 0.474 ,1.575 g/cm3, 0.296g/cm3 , 81.21 %, 1.41cm2,0.073 cm3, 0.625,0.5820.845 ,7.33 m/s ตามลำดับ และทำการเพิ่มความชื้นในระดับต่างๆ ( 4.15 -15.25 % wb. ) ซึ่งจากผลการทดลองพบว่า ความชื้นมีผลต่อการเปลี่ยนแปลงของคุณสมบัติต่างๆที่ได้กล่าวมาโดยมีลักษณะความสัมพันธ์กันเป็นเชิงเส้น โดยจะแปรผันตรงซึ่งกัน เว้นแต่ ความหนาแน่นรวมจะมีลักษณะที่แปรผกผันกับความชื้น 1.บทนำ ทานตะวัน (sunflower) มีชื่อวิทยาศาสตร์Helianthus annuus L.เป็นพืชน้ำมันที่สำคัญชนิดหนึ่งของโลก นิยมปลูกกันมากในเขตอบอุ่น ทานตะวันมีการปลูกเพื่อใช้บริโภคโดยตรง และใช้สกัดเป็นน้ำมัน เมล็ดทานตะวันมีน้ำมันในเมล็ดอยู่ประมาณ 40% ซึ่งเป็นน้ำมันที่มีคุณค่าทางโภชนาการสูง เนื่องจากมีกรดไขมันไม่อิ่มตัวสูงถึง 88%ซึ่งถือว่าสูงเมื่อเปรียบเทียบกับพืชน้ำมันชนิดอื่น (เสาวรี บำรุง, 2550) ทั้งนี้ยังประกอบไปด้วย โปรตีน ธาตุเหล็ก แคลเซียมฟอสฟอรัส วิตามินเอ ดี อี และเค โดยเฉพาะวิตามินอีที่มีอยู่ในปริมาณสูงในเมล็ดทานตะวันนั้นมีคุณค่าทางโภชนาการสูง คือช่วยบำรุงผิวหนังให้เต่งตึงดูอ่อนวัย ชะลอความแก่ของผิวหนัง ลดการอักเสบ ป้องกันการเกิดการแข็งตัวของเลือด ป้องกันโรคมะเร็ง และโรคหัวใจ ป้องกันการเกิดต้อกระจก สามารถนำไปทำ Lecthinเพื่อใช้ในทางการแพทย์เพื่อช่วยลดไขมันในเส้นเลือด (Cholesterol) เป็นต้น นอกจากนี้กากที่ได้หลังจากการสกัดน้ำมันแล้วสามารถนำไปใช้เป็นอาหารสัตว์ได้เป็นอย่างดีเนื่องจาก มีโปรตีนสูงและย่อยง่าย ในทางด้านอุตสาหกรรม ทานตะวันยังถูกนำมาใช้เป็นวัตถุดิบในอุตสาหกรรมต่างๆ เช่น ครีมเทียม เนยเทียม เครื่องสำอางน้ำมันชักเงา น้ำมันหล่อลื่น การทำสบู่ อุตสาหกรรมฟอกสีและทำสี และยังสามารถนำมาผลิตเป็นไบโอดีเซลได้อีกด้วย ดังนั้นทางคณะผู้วิจัยจึงได้ทำการศึกษาคุณสมบัติทางกายภาพของเมล็ดทานตะวัน และศึกษาความสัมพันธ์ระหว่างความชื้นกับคุณสมบัติที่เปลี่ยนไปของ เมล็ดทานตะวันทั้งแบบกะเทาะเปลือก และไม่กะเทาะเปลือก เช่น ความยาว ความกว้าง ความหนา มวลรวม100 เมล็ด ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราคณิต ความเป็นทรงกลม พื้นที่ภาพฉาย ความหนาแน่นรวม ความหนาแน่นเนื้อ ความพรุน ปริมาตรต่อหนึ่งเมล็ด สัมประสิทธิ์แรงเสียดทานสถิตย์ และความเร็วสุดท้าย เพื่อเป็นข้อมูลที่มีประโยชน์ ที่จะใช้ในศึกษาและในการพัฒนาการออกแบบเครื่องจักรกลในทางอุตสาหกรรมต่อไป สัญลักษณ์เฉพาะ (Nomenclature) Mc = ความชื้นฐานเปียก (moisture content, % w.b.) ρb = ความหนาแน่นรวม (Bulk density, g/cm3) Dg = เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (mm.) ρs = ความหนาแน่นเนื้อ (true density, g/cm3) a= ความยาวของเมล็ดทานตะวัน (mm.) Sp = ความเป็นทรงกลม (Sphericity) b = ความกว้างของเมล็ดทานตะวัน (mm.) Pr = ความพรุน (porosity, %) c= ความหนาของเมล็ดทานตะวัน (mm.) M = น้ำหนักของเฮกเซน (g) W = น้ำหนักเมล็ดทานตะวัน 50 เมล็ด (g) VS = ปริมาตรเมล็ด (volume of seed, cm3) P = พื้นที่ภาพฉาย (projected area, cm2) V = ปริมาตรของภาชนะบรรจุ (cm3) Ma = น้ำหนักเมล็ดทานตะวันก่อนอบ (g) Ar= มุมเอียง (angle of repose, degree) Mb = น้ำหนักเมล็ดทานตะวันหลังอบ (g) ρ = ความหนาแน่นของเฮกเซน (g/cm3) µ = สัมประสิทธิ์แรงเสียดทานสถิตย์ (coefficient of friction) Ms = มวลรวมของ 100 เมล็ด (g) Vt = ความเร็วสุดท้าย (Terminal velocity m/s ) 2. วัสดุและวิธีการทดลอง 2.1 การเตรียมวัตถุดิบ เมล็ดทานตะวันที่ใช้ในทดลองเป็นเมล็ดทานตะวันที่ใช้ในการบริโภค และยังไม่กะเทาะเปลือกซึ่งได้หาซื้อจากตลาดนัดสุวรรณภูมิ เขตลาดกระบัง กรุงเทพมหานครซึ่งเก็บไว้ในถุงสุญญากาศ จำนวน 2 ถุง ถุงละ 1000 g ทำการกะเทาะเปลือกเมล็ดให้ได้อย่างน้อย 1000 g ผนึกถุงเก็บไว้ในที่แห้ง เพื่อป้องกันเมล็ดเสียหายทำการคัดเลือกเมล็ดทานตะวันด้วยมืออีกครั้ง ทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก จากนั้นทำการหาปริมาณความชื้นเริ่มต้น โดยสุ่มเลือกเมล็ดประมาณ 5 g ทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก นำไปอบในตู้อบ อุณหภูมิ 105 °C นาน 2 ชั่วโมง หาความชื้นเริ่มต้นจากสมการ หลังจากนั้นทำการปรับระดับความชื้นของเมล็ดเพิ่มอีก4 ระดับ โดยอิงค่าความชื้นเริ่มต้นเป็นเกณฑ์ ปรับความชื้น เพิ่ม ขึ้น 3,6,9,12 % ตามลำดับ คำนวณหาปริมาณน้ำที่ต้องเติมลงไปจากสมการที่ (1) เติมน้ำที่คำนวณได้ลงไปผสมกับเมล็ดในถุงให้ทั่วถึง จากนั้นทำการผนึกถุง นำไปเก็บไว้ที่อุณหภูมิ 5 °C เป็นเวลา 7 วันโดยต้องทำการเขย่าถุงให้เมล็ดผสมกับน้ำให้ทั่วทุกๆวัน ก่อนจะนำเมล็ดมาวัดหาค่าคุณสมบัติต่างๆให้นำเมล็ดออกมาจากตู้เย็นวางทิ้งไว้ 10 นาทีเพื่อปรับอุณหภูมิให้เท่ากับอุณหภูมิห้อง 2.2 วิธีการทดลอง 2.2.1 มวลรวม100 เมล็ด ( 100 Mass ) นำเมล็ดทานตะวันที่เตรียมไว้ทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก ทำการสุ่ม เลือกเมล็ดความชื้นละ 100 เมล็ด ชั่งน้ำหนักโดยชั่งด้วยเครื่องชั่งดิจิตอลที่มีความละเอียด 0.01 g ทำการทดลองซ้ำความชื้นละ 3 ครั้ง และหาค่าเฉลี่ย 2.2.2 ขนาด (size) ใช้เวอร์เนียร์คาลิปเปอร์ วัดขนาดเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก ทั้งความยาว (a) ความกว้าง (b) และความหนา (c) ความชื้นละ 100 เมล็ด ทุกระดับความชื้น บันทึกผล รูปที่ 1การวัดขนาดโดยใช้เวอร์เนียร์คาลิปเปอร์ 2.2.3 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) นำข้อมูลที่ได้จากการวัดขนาดในแต่ละระดับความชื้นมาหาค่าเฉลี่ยและนำไปคำนวณหาเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตจากสมการ 2.2.4 ความเป็นทรงกลม (Sphericity) สามารถหาค่าความเป็นทรงกลมได้จากสมการดังนี้ 2.2.5 พื้นที่ภาพฉาย (Projected area) ทำการสุ่มเลือกเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือกมาความชื้นละ 50 เมล็ด นำมาเรียงบนกระดาษสีขาว ถ่ายภาพด้วยกล้องถ่ายภาพ จากนั้นนำไปเปรียบเทียบกับช่องสี่เหลี่ยมขนาด 1cm2โดยใช้โปรแกรม Adobe Photoshop CS5.1 จะได้พื้นที่เมล็ดเป็น pixcelจากนั้นทำการเทียบบัญญัติไตรยางศ์ เพื่อหาพื้นที่เมล็ดในหน่วย cm2 รูปที่ 2การหาพื้นที่ภาพฉาย 2.2.6 ความหนาแน่นรวม (bulk density) เทเมล็ดทานตะวันผ่านกรวยที่มีความสูงห่างจากภาชนะ 15 cm.ทำการเกลี่ยเมล็ดโดยใช้ไม้บรรทัดโดยให้เกลี่ยเมล็ดพอดีกับปากภาชนะชั่งน้ำหนักของเมล็ดและคำนวณหาค่าความหนาแน่นรวมจากสมการ 2.2.7 ความหนาแน่นเนื้อ (true density) คำนวณหาความหนาแน่นของเฮกเซน โดยนำขวด Pychonometerชั่งน้ำหนักเติมเฮกเซนจนเต็มปิดฝาชั่งน้ำหนักแล้วคำนวณหาความหนาแน่นจากสมการ จากนั้นนำเมล็ดทานตะวันที่กะเทาะเปลือกแล้วจำนวน50เมล็ดชั่งน้ำหนักและหาปริมาตรของเมล็ด โดยนำไปใส่ในขวด Phychonometerที่เติมเฮกเซนไว้แล้ว ปิดฝาแล้วนำไปชั่งอีกครั้ง จะสามารถหาปริมาตรของเมล็ดได้ โดยปริมาตรของเมล็ดที่ถูกแทนที่เท่ากับปริมาตรของเฮกเซนที่แทนที่ด้วยเมล็ดทานตะวัน หาความหนาแน่นเนื้อ จาก สมการ สำหรับการหาค่าความหนาแน่นเนื้อของเมล็ดทานตะวันแบบไม่กะเทาะเปลือก ทำได้โดยชั่งเมล็ด บนเครื่องชั่งดิจิตอลที่มีค่าความละเอียดที่ 0.0001 g ใส่เฮกเซนลงในบีกเกอร์นำไปบีกเกอร์ ไปชั่งน้ำหนักจากนั้นใช้เข็มจิ้มลงเมล็ด และนำไปจุ่มลงในสารที่อยู่ในบีกเกอร์บนเครื่องชั่งดิจิตอลแล้วบันทึกค่าที่อ่านได้และหาปริมาตรของเมล็ดจากสมการ และคำนวณหาความหนาแน่นเนื้อจากสมการ 2.2.8 ความพรุน (porosity) ค่าความพรุนสามารถหาได้จากสมการความสัมพันธ์ระหว่างความหนาแน่นเนื้อกับความหนาแน่นรวม ดังนี้ 2.2.9 สัมประสิทธิ์แรงเสียดทานสถิตย์ (coefficient of friction) นำเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก อย่างละ 10 เมล็ดมาหาค่ามุมเอียง โดยวางนำเมล็ดไปวางไว้บนพื้นไม้เอียง ค่อยๆยกพื้นเอียงให้สูงขึ้น จนเมล็ดเริ่มไถลลงทำการทดลองทุกความชื้นและเปลี่ยนพื้นเอียงเป็น พื้นยาง และอลูมิเนียม ตามลำดับ หาค่าสัมประสิทธิ์แรงเสียดทานสถิตย์จากสมการ รูปที่ 3แสดงการวัดค่ามุมเอียง 2.2.10 ความเร็วสุดท้าย (Terminal Velocity) หาความเร็วสุดท้ายของเมล็ดทานตะวันโดยนำเมล็ดจำนวน 10 เมล็ด ชั่งมวล บันทึกผลแล้ววางบนตะแกรงบนชุดศึกษาสมบัติทางอากาศพลศาสตร์ค่อยๆ ปรับความเร็วลมเพิ่มทีละน้อยจนเมล็ดลอยพ้นตะแกรงแต่ไม่หลุดออกจากท่อแล้วนำมาหาค่าความเร็วสุดท้าย 3. ผลการทดลองและวิจารณ์ จากการทดลองผลของความชื้นต่อสมบัติทางกายภาพของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก ซึ่งเมล็ดทานตะวันแบบกะเทาะเปลือกมีค่าความชื้นอยู่ในช่วง 1.15 - 13.15 % wb. และเมล็ดทานตะวันแบบไม่กะเทาะเปลือก มีค่าความชื้นอยู่ ในช่วง 2.25 -14.25 % wb. ซึ่งได้ผลการทดลองดังตารางที่ 1 ซึ่งจะแสดงคุณสมบัติทางกายภาพ จำนวนครั้งที่ทำการทดลองซ้ำ ค่าสูงสุด ค่าต่ำสุด และค่าเฉลี่ยโดยจะแสดงคุณสมบัติต่างๆต่อค่าความชื้นเริ่มต้นของเมล็ดทานตะวันแบบกะเทาะเปลือกคือ1.15%wb. และเมล็ดทานตะวันแบบไม่กะเทาะเปลือกคือ 2.25 % wb. ตารางที่ 1คุณสมบัติทางกายภาพของเมล็ดทานตะวันแบบกะเทาะเปลือกค่าความชื้น 1.15 % wb. และเมล็ดทานตะวันแบบไม่กะเทาะเปลือกค่าความชื้น 2.25 % wb. 3.ผลการทดลองและวิจารณ์ผลการทดลอง 3.1 มวลรวม100 เมล็ด รูปที่ 4ความสัมพันธ์ระหว่างมวลรวมและความชื้น เมื่อความชื้นเพิ่มมากขึ้นค่ามวลรวม 100 เมล็ดมีแนวโน้มที่เพิ่มขึ้น เนื่องจากเมล็ดนั้นได้รับปริมาณน้ำที่เพิ่มขึ้นเมล็ดมีการดูดซึมน้ำเข้าไป ทำให้เมล็ดเกิดการพองตัวและมีขนาดใหญ่ขึ้นจึงส่งผลให้มีมวลรวมที่เพิ่มขึ้นด้วย ซึ่งมีความสัมพันธ์ดังสมการ Seed : M = 0.409 Mc + 16.384 (R² = 0.8759) Kernel : M = 0.1243 Mc + 8.525 ( R² = 0.8818 ) 3.2 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเราขาคณิต (GMD) รูปที่ 5ความสัมพันธ์ระหว่างเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตและความชื้น เมื่อความชื้นเพิ่มมากขึ้น เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตมีแนวโน้มเพิ่มมากขึ้นเป็นเชิงเส้น เนื่องจากขนาดเมล็ดนั้นมีการดูดซึมน้ำเข้าไปส่งผลให้มีความยาว ความกว้าง ความหนาที่เพิ่มขึ้น จึงส่งผลให้เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตเพิ่มขึ้นตามไปด้วยด้วย ซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003) sunflower seed ( R.K.Gupta;S.K .Das,1996 ) ซึ่งมีความสัมพันธ์ดังสมการ Seed : Dg = 0.0193Mc + 9.5965 ( R² = 0.8825 ) Kernel : Dg = 0.005Mc + 5.5883 ( R² = 0.7705 ) 3.3 ความเป็นทรงกลม (Sphericity) รูปที่ 6ความสัมพันธ์ระหว่างความเป็นทรงกลมและความชื้น เมื่อความชื้นเพิ่มมากขึ้น ค่าความเป็นทรงกลมมีแนวโน้มเพิ่มมากขึ้นเป็นเชิงเส้น เนื่องจากเมล็ดนั้นมีขนาดขยายใหญ่ขึ้น ส่งผลให้เมล็ดมีความเป็นทรงกลมเพิ่มมากขึ้นด้วย ซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003) moth gram (P.M. Nimkar; Dipali S. Mandwe; Renu M. Dudhe,2005) ซึ่งมีความสัมพันธ์ดังสมการ Seed :ϕ = 0.0003Mc + 0.4721 (R² = 0.8848) Kernel :ϕ = 0.0001Mc + 0.4198 (R² = 0.8475) 3.4 พื้นที่ภาพฉาย (Projected area) รูปที่ 7ความสัมพันธ์ระหว่างพื้นที่ภาพฉายและความชื้น เมื่อความชื้นเพิ่มมากขึ้น เมล็ดมีการดูดซึมน้ำเข้าไป จะส่งผลให้เมล็ดขยายตัวเพิ่มขึ้นซึ่งส่งผลพื้นที่ภาพฉายมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น ซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003) sunflower seed ( R.K.Gupta;S.K .Das,1996 ) ซึ่งมีความสัมพันธ์ดังสมการ Seed : P = 0.0081Mc + 1.3971 (R² = 0.8985) Kernel : P = 0.0005Mc + 0.5317 (R² = 0.8904) 3.5 ความหนาแน่นรวม (bulk density) รูปที่ 8ความสัมพันธ์ระหว่างความหนาแน่นรวมและความชื้น เมื่อค่าความชื้นมีค่าเพิ่มมากขึ้น ความหนาแน่นรวมมีแนวโน้มลดลงเป็นเชิงเส้น ทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก เนื่องจาก เมื่อเมล็ดได้รับน้ำเข้าไปเมล็ดจะขยายตัวออกทำให้มีปริมาตรที่เพิ่มขึ้น แต่มีมวลเพิ่มขึ้นเพียงเล็กน้อยเนื่องจากภายในเมล็ดนั้นประกอบด้วยไขมันอยู่มาก ซึ่งไขมันจะไม่รวมตัวกับน้ำ ทำให้มวลเมล็ดเพิ่มขึ้นเพียงเล็กน้อย และเมื่อบรรจุลงภายในภาชนะ ทำให้เกิดช่องว่างภายในภาชนะมากขึ้น จึงทำให้บรรจุเมล็ดได้น้อยลง ทำให้น้ำหนักรวมเมล็ดลดลง ส่งผลให้ค่าความหนาแน่นรวมมีค่าลดลง โดยความหนาแน่นรวมของเมล็ดที่กะเทาะเปลือกจะมีค่ามากกว่าเพราะเมล็ดมีขนาดเล็ก เมื่อบรรจุในภาชนะจะสามารถบรรจุได้มากกว่าน้ำหนักรวมจึงมากกว่าทำให้ความหนานแน่นรวมมากกว่าเมล็ดที่ยังไม่กะเทาะเปลือกซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003) moth gram (P.M. Nimkar; Dipali S. Mandwe; Renu M. Dudhe,2005) มีความสัมพันธ์ดังสมการ Seed :ρb = -0.0056Mc + 0.3064 (R² = 0.927) Kernel :ρb = -0.0066Mc + 0.5968 (R² = 0.8904) 3.6 ความหนาแน่นเนื้อ (True density) รูปที่ 9ความสัมพันธ์ระหว่างความหนาแน่นเนื้อและความชื้น เมื่อค่าความชื้นมีค่าเพิ่มมากขึ้น ความหนานแน่นเนื้อของเมล็ดมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น เนื่องจากเมล็ดมีเกิดการพองตัว โมเลกุลของน้ำเข้าไปอุดรูพรุนในเมล็ด ส่งผลให้น้ำหนักเมล็ดเพิ่มขึ้น ทำให้ความหนาแน่นรวมของเมล็ดมีค่าเพิ่มขึ้นตามไปด้วย ซึ่งสอดคล้องกับงานวิจัยhemp seed (Saciliket al,2003) sunflower seed (R.K.Gupta;S.K .Das,1996) ซึ่งมีความสัมพันธ์ดังสมการ Seed :ρs = 0.01Mc + 1.4296 (R² = 0.6515) Kernel :ρs = 0.001 Mc + 1.179 (R² = 0.7312) 3.7 ความพรุน (Porosity) รูปที่ 10ความสัมพันธ์ระหว่างความพรุนและความชื้น เมื่อค่าความชื้นเพิ่มมากขึ้น ค่าความพรุนของเมล็ดจะมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น โดยที่เมล็ดทานตะวันที่ไม่กะเทาะเปลือกมีความพรุนที่สูงกว่าเมล็ดทานตะวันกะเทาะเปลือกเนื่องจาก ภายในเมล็ดทานตะวันกะเทาะเปลือกนั้นมีช่องว่างของรูพรุนระหว่างเมล็ด กับเปลือกอยู่มากกว่า ส่งผลให้ค่าความพรุนมีค่ามากซึ่งมีลักษณะคล้ายกับงานวิจัยsunflower seed ( R.K.Gupta;S.K .Das,1996 ) ซึ่งจะมีความสัมพันธ์กันดังสมการ Seed :ε= 0.4472Mc + 79.56 (R² = 0.8677) Kernel :ε = 0.5961Mc + 49.386 (R² = 0.8836) 3.8 ปริมาตรต่อหนึ่งเมล็ด ( Volume per seed ) รูปที่ 11ความสัมพันธ์ระหว่างปริมาตรต่อหนึ่งเมล็ดและความชื้น เมื่อค่าความชื้นเพิ่มมากขึ้น ปริมาตรต่อหนึ่งเมล็ดมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น เนื่องจากเมื่อความชื้นเพิ่มขึ้น เมล็ดมีการดูดซึมน้ำเข้าไป เมล็ดจะเกิดการขยายตัวออก ทำให้มีขนาดที่ใหญ่ขึ้นทำให้ปริมาตรก็จะเพิ่มขึ้นตามไปด้วยซึ่งมีความสัมพันธ์ดังสมการ Seed : V= 0.447Mc + 79.56 (R² = 0.8677) Kernel : V = 0.0023Mc + 0.0664 (R² = 0.9089) 3.10 สัมประสิทธิ์แรงเสียดทานสถิตย์ (coefficient of friction) ตารางที่ 2แสดงสมการความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์กับความชื้นและค่า R2 รูปที่ 12ความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดทานตะวันไม่กะเทาะเปลือกและความชื้น ค่าสัมประสิทธิ์แรงเสียดทานสถิตของเมล็ดทานตะวันทั้ง 2 แบบมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น ซึ่งสัมพันธ์กับค่าความชื้นที่เพิ่มขึ้น ซึ่งพบว่าค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ ระหว่างเมล็ดกับ พื้นยาง จะมีค่ามากที่สุด รองลงมาคือ พื้นไม้ และ อะลูมิเนียม ตามลำดับซึ่งแสดงว่า เมล็ดนั้นทนการไหลต่อพื้นยางได้มากกว่าและพื้นอะลูมิเนียมมีค่าสัมประสิทธิ์แรงเสียดทานน้อยนั้น คือเมล็ดสามารถไหลได้ดีในพื้นอะลูมิเนียม ซึ่งสามารถนำข้อมูลนี้ไปประยุกต์ใช้ในการออกแบบเครื่องจักรกลต่อไปได้ 3.11 ความเร็วสุดท้าย (Terminal velocity) รูปที่ 14ความสัมพันธ์ระหว่างความเร็วสุดท้ายและความชื้น เมื่อความชื้นเพิ่มขึ้นความเร็วสุดท้ายมีแนวโน้มเพิ่มขึ้นเนื่องจากเมื่อความชื้นเพิ่มขึ้น มวลเมล็ด ค่าความเป็นทรงกลม พื้นที่ภาพฉาย มีค่าเพิ่มขึ้น ต้องใช้ลมที่มากขึ้นเพื่อให้เมล็ดลอยขึ้นสูง ส่งผลให้ค่าความเร็วสุดท้ายเพิ่มขึ้นด้วยเป็นเชิงเส้นซึ่งสามารถนำไปประยุกต์ใช้ในการออกแบบเครื่องจักรในการคัดเลือกเมล็ด ซึ่งคล้ายกับงานวิจัยsunflower seed ( R.K.Gupta;S.K .Das,1996 ) ซึ่งมีความสัมพันธ์ดังสมการ Seed :Vt = 0.015Mc + 7.3643 (R² = 0.6273) Kernel :Vt = 0.0187Mc + 8.4445 (R² = 0.7786) 4. สรุปผลการทดลอง 4.1 ความยาว ความกว้าง ความหนา ขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเชิงเรขาคณิต และความเป็นทรงกลม ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง 4.2 มวลรวม100 เมล็ด ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง 4.3 พื้นที่ภาพฉาย ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง 4.4 ความหนาแน่นรวม ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผกผัน 4.5 ความหนาแน่นเนื้อของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง 4.6 ความพรุน ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง 4.7 ปริมาตรต่อหนึ่งเมล็ด ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง 4.8 สัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรงในทุกพื้นผิว โดยเรียงลำดับค่าสัมประสิทธิ์แรงเสียดทานสถิตย์จากมากไปน้อย ได้เป็
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 (Effect of moisture content on some physical properties of Peanut kernel KHONKAEN 84-8) กฤษฎา วุฒิสาร, พงศธร ทองนุช , ภูริชญา เร่งพัฒนกิจ, วสันต์ อินทร์ตา สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง บทคัดย่อ สมบัติทางกายภาพของถั่วลิสงพันธุ์ขอนแก่น 84-8 (Peanut KHONKAEN 84-8) ที่มีความชื้น (ฐานเปียก) ในช่วง 5.14% - 17.14% พบว่า ค่าขนาด (Size) [ ความยาว (L) ความหนา (T) ความกว้าง (W) ] มีค่าอยู่ในช่วง 14.70 - 15.65 mm , 8.15 - 8.77 mm , 8.12 - 8.63 mm ตามลำดับ ค่าเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric Mean Diameter , GMD) มีค่าอยู่ในช่วง 9.90 - 10.56 mm ค่าความเป็นทรงกลม (Sphericity) ค่าอยู่ในช่วง 0.55 - 0.56 ค่าน้ำหนัก 100 เมล็ดของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 (100 seeds Mass) มีค่าอยู่ในช่วง 53.09 - 65.18 g ค่าพื้นที่ภาพฉาย (Projected Area) มีค่าอยู่ในช่วง 1.04-1.38 cm2 ค่าความหนาแน่นเนื้อ (True density) มีค่าอยู่ในช่วง 1.13-1.21 g/ml ค่าปริมาตรต่อเมล็ด มีค่าอยู่ในช่วง 0.33 -0.61 ml ค่าความพรุน (Porosity) มีค่าอยู่ในช่วง 18.37-58.78 % และค่าความเร็วสุดท้าย (Terminal Velocity) มีค่าอยู่ในช่วง 12.25 - 12.68 rpm จะพบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มเพิ่มขึ้นแบบเชิงเส้น แต่ในทางกลับกันค่าความหนาแน่นรวม (Bulk density) มีค่าอยู่ในช่วง0.67 - 0.61 g/ml พบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มลดลงแบบเชิงเส้น และเมื่อนำเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 ที่มีความชื้นในระดับที่ต่างกันมาทำการหาค่าสัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) กับพื้นผิววัสดุที่ต่างกัน 3 ชนิดคือ แผ่นยางแผ่นไม้อัด และ แผ่นอลูมิเนียม พบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มที่เพิ่มขึ้นแบบเชิงเส้น 1.บทนำ ถั่วลิสง (Peanut หรือ Groundnut) มีชื่อทางวิทยาศาสตร์ว่า Arachis hypogaea L. เป็นพืชล้มลุกตระกูลถั่ว อยู่ในวงศ์ Leguminosae มีถิ่นกำเนิดจากทวีปอเมริกาใต้ สามารถเจริญเติบโตได้ดีในเขตร้อนและเขตอบอุ่น ในส่วนของประเทศไทยสามารถปลูกได้ในทั่วทุกภูมิภาคเนื่องจากเป็นประเทศเขตร้อน พื้นที่ที่เหมาะสมในการเพาะปลูกได้แก่ ที่ราบเชิงเขา ที่ดอน หรือที่ราบที่มีการระบายน้ำได้ดี ลักษณะเด่นของถั่วลิสงที่แตกต่างจากพืชตระกูลเดียวกันคือ ถั่วลิสงออกดอกบนดิน แต่มีฝักอยู่ใต้ดิน ส่วนที่นำมาบริโภคคือเมล็ดภายในฝัก อาจมี1 - 4 เมล็ดต่อฝักขึ้นอยู่กับสายพันธุ์ ถั่วลิสงเป็นพืชไร่เศรษฐกิจที่สำคัญชนิดหนึ่งเของประเทศไทย ในปี 2552 มีเนื้อที่เพาะปลูก 205,235 ไร่ มีผลผลิต 51,586 ตัน (สำนักงานเศรษฐกิจการเกษตร,2552) เนื้อที่การเพาะปลูกถั่วลิสง ลดลง กอรปกับความต้องการเพิ่มมากขึ้นทุกปีส่งผลให้มีปริมาณผลผลิตถั่วลิสงของประเทศไทยไม่เพียงพอต่อความต้องการภายในประเทศต้องมีการนำเข้ามาจากต่างประเทศอย่างต่อเนื่องแนวทางแก้ไขหนึ่งคือการปรับปรุงพันธุ์ให้ถั่วลิสงมีผลผลิตสูงขึ้นและต้านทานโรคได้มากขึ้น ถั่วลิสงพันธุ์ขอนแก่น 84-8 เป็นอีกสายพันธุ์ถั่วลิสงที่ได้จากการปรับปรุงพันธุกรรมภายในประเทศ โดยศูนย์วิจัยพืชไร่ขอนแก่น จังหวัดขอนแก่น เพื่อ สามารถทนทานต่อโรคพืชได้มากยิ่งขึ้น ได้ผลผลิตที่สูงขึ้นและทนทานต่อสภาพแวดล้อมมากขึ้น (อารันต์และคณะ,2533) เดิมมีชื่อพันธุ์ KK4401 ได้จากการผสมพันธุ์ระหว่างพันธุ์ขอนแก่น 60-2 (ต้นแม่) ซึ่งอยู่ในกลุ่มถั่วฝักสดสำหรับต้ม และพันธุ์ Tupai (ต้นพ่อ) ที่มีความต้านทานต่อโรคเหี่ยวที่เกิดจากเชื้อแบคทีเรีย (จิรากร,2555) และค่อนข้างทนทานต่อโรคโคนเน่าขาวได้ดีกว่าพันธุ์อื่นๆ มีเสถียรภาพในการให้ผลผลิตดี ปลูกง่าย โตเร็ว สามารถปลูกได้ในสภาพการผลิตถั่วลิสงของไทย อายุถึงวันออกดอก 25-30 วัน อายุถึงวันเก็บเกี่ยว 95-110 วัน ให้ผลผลิตฝักสด 650-800 กิโลกรัมต่อไร่ ผลผลิตฝักแห้ง 280-320 กิโลกรัมต่อไร่ มีจำนวนเมล็ด 1-3เมล็ดต่อฝักมีเปอร์เซ็นต์การกะเทาะ 64-67เปอร์เซ็นต์มีขนาดเมล็ดโต โดยน้ำหนัก 100 เมล็ด เท่ากับ 44-55 กรัม ซึ่งโตกว่าถั่วลิสงพันธุ์ไทนาน 9 และขอนแก่น 5 ที่มีน้ำหนัก 100 เมล็ด เท่ากับ 43.0 และ 47.5 กรัม ตามลำดับ มีลักษณะเด่น คือ มีเมล็ดรูปร่าง กลมรี สีแดงเลือดหมู เป็นร่อง เหมาะสำหรับทำเป็นถั่วต้ม เนื่องจากมีรสชาติดี มีเยื่อหุ้มเมล็ดสีชมพูเข้ม เส้นลายบนฝักเห็นได้ชัดเจน ซึ่งเป็นที่นิยมของตลาดถั่วลิสงฝักต้มในประเทศไทย มีโปรตีน 23.4เปอร์เซ็นต์ และ น้ำมัน 44.9 เปอร์เซ็นต์ สมบัติทางกายภาพของเมล็ดถั่วลิสง มีความสำคัญต่อการออกแบบเครื่องจักรและอุปกรณ์แปรรูปในขั้นตอนแปรรูป เช่น การทำความสะอาด การคัดขนาด การคัดแยก การขนส่งลำเลียง การอบแห้ง ตลอดจนการเก็บรักษาAydin (2006) ได้ศึกษาผลของความชื้นต่อสมบัติทางกายภาพของเมล็ดถั่วลิสงจากประเทศตุรกี แต่ในส่วนของถั่วลิสง สายพันธุ์ขอนแก่น 84-8 ซึ่งเป็นพันธุ์ที่ทางศูนย์วิจัยพืชไร่ขอนแก่นได้ ปรับปรุงใหม่ ยังไม่มีการศึกษามาก่อน วัตถุประสงค์ของงานวิจัยนี้ คือการศึกษาสมบัติทางกายภาพของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8ต่อผลของความชื้น ได้แก่ ขนาดของเมล็ด (Size) เส้นผ่านศูนย์กลางเฉลี่ย (Geometric Mean Diameter) ค่าความเป็นทรงกลม (Sphericity) ปริมาตรต่อเมล็ด (Volume per seed) มวล 100 เมล็ด (100 seeds Mass) พื้นที่ภาพฉาย (Projected Area) ความหนาแน่นรวม (Bulk density) ความหนาแน่นจริง (True density) ปริมาตรต่อหนึ่งเมล็ด (Volume per seed ) ความพรุน (Porosity) ความเร็วสุดท้าย (Terminal Velocity) และค่าสัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) เพื่อประยุกต์ใช้ประโยชน์ในงานออกแบบเครื่องจักรและอุปกรณ์แปรรูปถั่วลิสง รวมทั้งประโยชน์ด้านอื่นๆที่เกี่ยวข้อง 2. วัตถุดิบและวิธีการทดลอง 2.1 วัตถุดิบและการเตรียมวัตถุดิบ เมล็ดถั่วลิสงพันธุ์ขอนแก่น84-8 (Arachis hypoqaca L.) ได้จาก ศูนย์วิจัยพืชไร่ขอนแก่น 180 ตำบลศิลา อำเภอเมือง จังหวัดขอนแก่น 40000 โดยตัวอย่างที่ได้รับเป็นถั่วลิสงที่ยังไม่ได้ผ่านการคัดขนาดและคุณภาพของเมล็ดหรือแกะออกจากฝักแต่อย่างใด บรรจุในถุงพลาสติกปิดผนึกเก็บไว้ที่อุณหภูมิห้อง นำตัวอย่างมาทำความสะอาดนำเศษดินและฝุ่นออกด้วยมือ แกะและแยกเมล็ดออกจากฝัก แล้วคัดแยกเมล็ดที่ไม่สมบูรณ์เช่น เมล็ดแตกหัก เมล็ดฝ่อ หรือเมล็ดที่เน่าออกใช้เฉพาะเมล็ดที่สมบูรณ์ในการทดลอง 2.2 การหาเปอร์เซ็นต์ความชื้น ค่าความชื้นเริ่มต้นของตัวอย่างเมล็ดถั่วลิสงหาได้จากการ แบ่งตัวอย่างออกเป็น 3 ชุดการทดลอง ชุดละประมาณ 5 กรัม ชั่งจากเครื่องชั่งไฟฟ้า (Yamato รุ่น HB-120 , ประเทศญี่ปุ่น) ที่มีค่าความละเอียดอยู่ที่ 0.0001 g อบด้วยตู้อบลมร้อน (MEMMERT รุ่น UFB 400 , ประเทศเยอรมัน ) ที่อุณหภูมิ 105 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง ทำ 3 ซ้ำ คำนวณหาความชื้นเริ่มต้นได้จากสมการ 2.3 การปรับความชื้น นำเมล็ดถั่วลิสง จำนวน 100 เมล็ด มาปรับความชื้น 5 ระดับ เมื่อคำนวณหาค่าเปอร์เซ็นต์ความชื้นเริ่มต้น เพิ่มจากความชื้นเริ่มต้น โดยเพิ่มขึ้นระดับละ 3 เปอร์เซ็นต์ จาก 8.14 ถึง 17.14 ปริมาณน้ำที่ต้องเติมเพื่อให้ได้ค่าเปอร์เซ็นต์ความชื้นที่ต้องการ คำนวณได้จากสมการ 2 และ 3 หลังจากเติมน้ำสะอาดในแต่ละถุง ปิดปากถุงให้สนิทแล้วเก็บไว้ในตู้เย็นที่อุณหภูมิ 5 องศาเซลเซียส เป็นเวลา 7 วัน ในระหว่างที่เก็บในตู้เย็นต้องเขย่าถุงตัวอย่างทุกๆ 2 วัน เพื่อให้มีความชื้นสม่ำเสมอทั่วทุกเมล็ด 2.4 คุณสมบัติทางกายภาพ 2.4.1 ขนาด (Size) วัดขนาดเมล็ดด้วยเวอร์เนียคาร์ลิปเปอร์ โดยวัดความยาว (L) คือวัดด้านที่มีเส้นผ่านศูนย์กลางยาวที่สุด ความกว้าง (W) คือวัดเส้นผ่านศูนย์กลางยาวที่สุดที่ตั้งฉากกับ L และความหนา (T) คือวัดด้านเส้นผ่านศูนย์กลางยาวที่สุดที่ตั้งฉากกับ W และ L วัดทุกความชื้นจำนวน 100 เมล็ด Figure 1 Axis and three dimens of peanut kernel. 2.4.2 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric Mean Diameter , GMD) เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต สามารถคำนวณได้ จากสมการ GMD = (WLT) 1/3 (4) 2.4.3 ความเป็นทรงกลม (Sphericity , Sp) ความเป็นทรงกลมเป็นของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 คำนวณได้จากสมการ 2.5 น้ำหนัก 100 เมล็ด (100 seeds Mass) สุ่มเมล็ดถั่วลิสง จำนวน 100 เมล็ด ชั่งด้วยเครื่องชั่งดิจิตอล (Shimadzu US3200G , ประเทศญี่ปุ่น) ซึ่งมีค่าความละเอียดอยู่ที่ 0.01 g ในแต่ละความชื้นทำการทดลองจำนวน 3 ซ้ำ แล้วหาค่าเฉลี่ย 2.6 พื้นที่ภาพฉาย (Projected area) พื้นที่ภาพฉาย เป็นค่าที่บอกพื้นที่ของเมล็ดถั่วจากการเทียบอัตราส่วนพิกเซล โดยเมื่อทำการปรับความชื้นเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 ครบตามระยะเวลาที่กำหนดแล้ว นำเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 สุ่มเมล็ดถั่วลิสงมาจากแต่ละความชื้น ความชื้นละ 50 เมล็ด จัดวางแต่ละเมล็ดในระยะที่เท่าๆกันเรียงบนพื้นผิวเรียบ และวาดรูปสี่เหลี่ยมจัตุรัสขนาด 1 cm x 1 cm ไว้ที่บนกระดาษ จากนั้นถ่ายภาพจากมุมสูงด้วยกล้องดิจิตอลที่มีความละเอียด 5 ล้านพิกเซล นำรูปภาพที่ได้มาหาสัดส่วนพื้นที่ (cm2) และพื้นที่pixel ระหว่างรูปสี่เหลี่ยมจัตุรัสและเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 โดยใช้โปรแกรม PhotoshopCS5Portable สามารถหาได้จากสมการ 2.7 ความหนาแน่นรวม (Bulk density , ρb) ความหนาแน่นเนื้อหาได้จากการนำเมล็ดถั่วลิสง มาใส่ลงในภาชนะที่ทราบปริมาตรผ่านกรวยจนเต็มโดยไม่มีการอัดเมล็ดให้แน่น ที่ระดับความสูงคงที่ 15 cm จากนั้นปาดเมล็ดส่วนที่เกินออกให้เสมอกับภาชนะ นำไปชั่งน้ำหนักด้วยเครื่องชั่งดิจิตอลที่มีค่าความละเอียด 0.01 g (US3200G , ประเทศญี่ปุ่น) โดยทำการทดลอง 3 ครั้ง ต่อหนึ่งความชื้น สามารถคำนวณได้จากสมการ 2.8 ปริมาตรต่อเมล็ด (Volume per seed) และความหนาแน่นเนื้อ (True density,Ps) ความหนาแน่นเนื้อใช้วิธีการชั่งน้ำหนักในของเหลว ด้วยวิธีการจุ่มเมล็ดลงในของเหลวแทน ซึ่งของเหลวที่ใช้คือ เฮกเซน เฮกเซนมีคุณสมบัติคือมีแรงตึงผิวต่ำไม่ซึมเข้าเมล็ดระหว่างการทดลองหาความหนาแน่น ทำให้น้ำหนักของเมล็ดไม่ผิดพลาด วิธีการทดลองคือ ซุ่มเมล็ดตัวอย่างจำนวน 10 เมล็ด ชั่งเมล็ดถั่ว 1 เมล็ดบนเครื่องชั่งดิจิตอลไฟฟ้า (Yamato รุ่น HB-120 , ประเทศญี่ปุ่น) มีค่าความละเอียด 0.0001 g บันทึกน้ำหนักที่อ่านได้จากเครื่อง จากนั้นบรรจุเฮกเซนลงในบีกเกอร์ที่มีปริมาตรแน่นอน นำไปชั่งบนเครื่องชั่งดิจิตอล บันทึกน้ำหนักที่ได้จากเครื่องชั่งจากนั้นใช้เข็มเย็บผ้าจิ้มเมล็ดเพื่อใช้จุ่มลงในสารเฮกเซนจุ่มเมล็ดลงในสารโดยให้พื้นผิวเมล็ดปริมอยู่ที่พื้นผิวสาร บันทึกค่าน้ำหนักที่เปลี่ยนไป จะได้ค่าปริมาตรของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จากสมการ นำปริมาตรของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8ที่ได้ไปหาความหนาแน่นเนื้อได้จากสมการ 2.9 ความพรุน (Porosity) ความพรุนคือค่าที่แสดงปริมาณช่องว่างที่มีอยู่ระหว่างเมล็ดถั่วลิสงระหว่างความหนาแน่นรวมต่อความหนาแน่นเนื้อ ซึ่งสามารถคำนวณได้จากสมการ 2.10 ความเร็วสุดท้าย (Terminal Velocity) ความเร็วสุดท้ายคือค่าความเร็วลมที่ทำให้เมล็ดถั่วลิสง ลอยขึ้นจากตะแกรง อย่างคงที่ที่ความสูงระดับหนึ่ง โดยที่เมล็ดไม่หลุดหรือกระเด็นออกจากอุปกรณ์ทดลอง ซึ่งหาได้จากการสุ่มเมล็ดตัวอย่างจำนวน 10 เมล็ด นำมาวางบนตะแกรงในชุดอุปกรณ์ทดลอง จากนั้นเปิดเครื่องให้กำเนิดลมเพิ่มรอบความถี่ของมอเตอร์ไปเรื่อยๆจนกระทั่งเมล็ดถูกเป่าจนลอยอยู่นิ่ง คงที่ ณ ความสูงระดับหนึ่ง วัดความเร็วลมด้วยเครื่องวัดความเร็วลม (รุ่น Testo 425, ประเทศเยอรมัน) Figure 2 Terminal velocity apparatus. 2.11 ค่าสัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction , µ) สุ่มเมล็ดถั่วลิสง มาจำนวน 10 เมล็ด แล้วนำมาวางบนอุปกรณ์วัดค่าสัมประสิทธิ์ความเสียดทานสถิตที่มีพื้นผิววัสดุต่างกัน 3 ชนิด ได้แก่ พื้นผิวไม้อัด พื้นผิวอลูมิเนียม และพื้นผิวยาง ซึ่งพื้นผิวเหล่านี้ติดอยู่บนอุปกรณ์วัดค่าสัมประสิทธิ์ความเสียดทานสถิต จากนั้นให้ค่อยๆยกพื้นผิวด้านหนึ่งขึ้นจนกระทั่งเมล็ดเริ่มกลิ้งไถลลงอย่างอิสระ อ่านค่ามุมที่เมล็ดเริ่มกลิ้งไถล โดยทำจนกระทั่งครบ 10 เมล็ดทั้ง 3 พื้นผิวในทุกๆความชื้น ซึ่งสามารถคำนวณหาสัมประสิทธิ์ความเสียดทานสถิต ได้จากสมการ µ = tanθ (11) Figure 3 Static coefficient of friction apparatus. Table 1 Physical properties of peanut KHONKAEN 84-8 at moisture content 5.14 % (w.b.) 3. ผลการทดลองและวิจารณ์ จากการศึกษาเปรียบเทียบคุณสมบัติทางกายภาพของเมล็ดถั่วลิสงค์พันธุ์ขอนแก่น 84-8 ที่ระดับความชื้นแตกต่างกัน 5 ระดับ 3.1 การกระจายตัวของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 (Frequency) Figure 4 Frequency distribution curves of peanut kernel size ( ◊ ,small , ,medium, ∆ , large ) and GMD at 5.14 (%w.b.) จำนวนการกระจายตัวของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 แบ่งตามขนาด ( 7.00 mm. - 8.99 mm. ขนาดเล็ก (S) , 9.00 mm -10.99 mm. ขนาดกลาง (M) , 11.00 mm.- 13.00 mm ขนาดใหญ่ (L) ) กับเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) ที่ความชื้นเริ่มต้น 5.14 (%w.b.) ซึ่งมีค่าการกระจายของเมล็ดขนาดกลางสูงที่สุด ในส่วนของค่าการกระจายของเมล็ดขนาดเล็กและขนาดโต มีค่าการกระจายตัวที่ต่ำและเมล็ดของถั่วลิสงพันธุ์ขอนแก่น 84-8 มีขนาดเล็กกว่าเมื่อเปรียบเทียบกับเมล็ดถั่วลิสงจากผลการศึกษาสมบัติทางกายภาพของถั่วลิสงและเมล็ดถั่วลิสง. Aydin (2006) 3.2 ขนาดของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 (Size) Figure 5 Effect of moisture content on size of peanut KHONKAEN 84-8 kernel. ขนาด (Size) ของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 ทั้งด้าน ความกว้าง (W) , ความยาว (L) และ ความหนา (T) ทั้ง3ด้าน มีแนวโน้มเพิ่มขึ้น (ขนาดเพิ่มขึ้น) เมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) เนื่องจากเมื่อเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 ได้รับความชื้นจะทำให้ด้าน W,L,T มีขนาดมากขึ้นและส่งผลให้เมล็ดมีขนาดเพิ่มขึ้นซึ่งมีแนวโน้มสอดคล้องกับการทดลองถั่วลิสงและเมล็ด. Aydin (2006) Figure 6 Effect of moisture content on Geometric Mean Diameter (GMD) of peanut KHONKAEN 84-8 kernel. เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) ของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) ซึ่งมีแนวโน้มสอดคล้องการทดลองถั่วลิสงและเมล็ด Aydin (2006) 3.4 ความเป็นทรงกลม (Sphericity) ค่าความเป็นทรงกลม (Sphericity) เป็นสมบัติทางกายภาพที่อธิบายรูปร่างของวัตถุ หากเมล็ดมีค่าความเป็นทรงกลมเท่ากับ 1 แสดงว่าเมล็ดมีขนาดเท่ากันทุกด้าน สามารถเคลื่อนที่โดยการกลิ้ง ส่วนเมล็ดที่มีค่าความเป็นทรงกลมไม่เท่ากับ 1 อาจเคลื่อนที่ด้วยการไถล สามารถนำไปใช้ประโยชน์ในด้านการลำเลียงเมล็ดบนสายพาน Figure 7 Effect of moisture content on sphericity of peanut KHONKAEN 84-8 kernel. ความเป็นทรงกลม (Sphericity) ของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะเพิ่มขึ้น เมื่อความชื้นเพิ่มขึ้น เนื่องจากถั่วลิสงมีเยื่อหุ้มเมล็ด ทำให้เมล็ดมีข้อจำกัดในการขยายตัวออกด้านข้างเมื่อได้รับความชื้น และเลือกขยายตัวออกสู่ด้านที่เป็นอิสระมากกว่า นั่นคือร่องหรือช่องว่างภายในเมล็ดแทนการขยายตัวออกทางด้างข้าง ผลของค่าความเป็นทรงกลมที่เกิดขึ้นจึงไม่เปลี่ยนแปลงอย่างเด่นชัด ซึ่งมีแนวโน้มสอดคล้องกับการทดลองถั่วโกโก้ Bart-Plange (2002) เมื่อเปรียบเทียบกับถั่วลันเตา Yalcın (2006) ค่าความเป็นทรงกลมของถั่วลันเตาจะมีค่าที่สูงกว่าถั่วลิสง เนื่องจากถั่วลันเตามีความเป็นทรงกลมและความสามารถในการขยายตัวอย่างอิสระมากกว่าถั่วลิสง 3.5 น้ำหนัก 100 เมล็ด (100 seeds Mass) น้ำหนัก 100 เมล็ด (100 seeds Mass) เป็นสมบัติทางกายภาพที่ประยุกต์ใช้กับการออกแบบบรรจุภัณฑ์หรือภาชนะสำหรับเก็บวัสดุ เช่น ไซโล เมื่อความชื้นเพิ่มขึ้น น้ำหนัก 100 เมล็ดของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะเพิ่มขึ้น เมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) Figure 8 Effect of moisture content on 100 seeds mass of peanut KHONKAEN 84-8 kernel. ซึ่งมีแนวโน้มสอดคล้องกับการทดลองถั่วลิสงและเมล็ด Aydin (2006) ถั่วปากอ้าAltuntas (2005) และถั่วลันเตา Yalcın (2006) โดยเมล็ดถั่วลิสงมีแนวโน้ม (ความชัน) ที่ต่ำกว่า และความสามารถในการดูดซับน้ำต่ำกว่าถั่วปากอ้าและถั่วลันเตา 3.6 พื้นที่ภาพฉาย (Projected Area) Figure 9 Effect of moisture content on projected area of peanut KHONKAEN 84-8 kernel. ซึ่งสอดคล้องกับการทดลองถั่วลิสงและเมล็ดเมล็ด Aydin (2006) ถั่วลันเตา Yalcın (2006) อัลมอนด์และเมล็ด Aydin (2003) โดยเมล็ดถั่วลิสงมีแนวโน้มที่ต่ำกว่าถั่วลันเตาและเมล็ดอัลมอนด์ แสดงให้เห็นถึงความสามารถในการขยายตัวและการดูดซับน้ำของเมล็ดถั่วลิสงที่ต่ำกว่าถั่วลันเตา และเมล็ดอัลมอนด์ พื้นที่ภาพฉาย (Projected Area) เป็นสมบัติทางกายภาพที่ประยุกต์ใช้กับการออกแบบตะแกรงเพื่อคัดขนาดหรือบรรจุภัณฑ์ พื้นที่ภาพฉายของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะเพิ่มขึ้น เมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) 3.7 ความหนาแน่นรวม (Bulk density) ความหนาแน่นรวม (Bulk density) เป็นสมบัติทางกายภาพของวัสดุ ที่บอกถึงความหนาแน่น ของวัสดุปริมาณมวลที่รวมช่องว่างระหว่างชิ้นวัสดุด้วย สามารถนำไปประยุกต์ใช้เพื่อการออกแบบขนาดของบรรจุภัณฑ์เช่น ไซโล (silo) สำหรับเก็บอาหาร ความหนาแน่นรวม (Bulk density) ของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะลดลง เมื่อความชื้นเพิ่มขึ้น (แปรผกผัน) Figure 10 Effect of moisture content on bulk density of peanut KHONKAEN 84-8 kernel. ซึ่งมีแนวโน้มสอดคล้องกับการทดลองถั่วลิสงและเมล็ด Aydin (2006) ถั่วโกโก้ Bart-Plange (2002) และอัลมอนด์และเมล็ด Aydin (2003) เนื่องจากเมล็ดถั่วลิสงเป็นถั่วน้ำมัน (Oilseed legume) มีไขมันเป็นส่วนประกอบถึง43.4 % เมื่อความชื้นเพิ่มขึ้น ไขมันไม่ขยายตัวแต่ส่วนที่ดูดซึมน้ำจะขยายตัว เมื่อเปรียบเทียบกับถั่วชนิดอื่นที่มีปริมาณไขมันสูงกว่า เช่น ถั่วโกโก้และถั่วอัลมอนด์ มีปริมาณไขมัน 54% และ49.42% ตามลำดับ พบว่าถั่วลิสงมีแนวโน้ม (ความชัน) ที่ต่ำกว่าถั่วที่มีปริมาณไขมันสูงกว่า 3.8 ความหนาแน่นเนื้อ (True density) ความหนาแน่นเนื้อ (Bulk density) ของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะเพิ่มขึ้น เมื่อความชื้นเพิ่มขึ้น Figure 11 Effect of moisture content on true density of peanut KHONKAEN 84-8 kernel. ซึ่งมีแนวโน้มสอดคล้องกับการทดลองถั่วลิสงและเมล็ด Aydin (2006) ) เมล็ดถั่วแดง ISIK (2007) อัลมอนด์และเมล็ด Aydin (2003) เนื่องจากถั่วลิสงเป็นถั่วน้ำมัน เมื่อความชื้นเพิ่มขึ้น ความหนาแน่นเนื้อจะไม่เปลี่ยนแปลงมากเพราะน้ำมันกับน้ำไม่รวมตัวกัน แต่เมื่อเปรียบเทียบกับถั่วลันเตา Yalcın (2006) จะพบว่าถั่วลิสงพันธุ์ขอนแก่น 84-8 มีแนวโน้มความหนาแน่นเนื้อที่ขัดแย้งกัน ด้วยเหตุผลที่ถั่วลันเตามีปริมาณไขมันในเมล็ดเพียง 0.4% ซึ่งต่ำกว่าถั่วลิสงมาก จึงส่งผลให้ความหนาแน่นเนื้อของถั่วลันเตาลดลง ในขณะที่ถั่วลิสงมีความหนาแน่นเพิ่มขึ้นเมื่อความชื้นเพิ่มขึ้น Figure 12 Effect of moisture content on volume per seed of peanut KHONKAEN 84-8 kernel. ซึ่งมีแนวโน้มสอดคล้องกับการทดลองถั่วปากอ้าAltuntas (2005) โดยถั่วปากอ้ามีแนวโน้ม (ความชัน) สูงกว่าถั่วลิสง 3.9 ปริมาตรต่อเมล็ด (Volume per seed) ปริมาตรต่อเมล็ด (Volume per seed) ของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะเพิ่มขึ้น เมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) 3.10 ความพรุน (Porosity) ความพรุน (Porosity) ของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) Figure 13 Effect of moisture content on porosity of peanut KHONKAEN 84-8 kernel. ซึ่งมีแนวโน้มสอดคล้องกับการทดลองถั่วลิสงและเมล็ด Aydin (2006) ถั่วโกโก้ Bart-Plange (2002) เมล็ดถั่วแดง ISIK (2007) อัลมอนด์และเมล็ด Aydin (2003) และถั่วลันเตา Yalcın (2006) โดยพบว่า ถั่วลิสงมีแนวโน้มสูงกว่าถั่วลันเตา , อัลมอนด์และเมล็ด,ถั่วโกโก้ และ เมล็ดถั่วแดง แสดงให้เห็นว่าที่ความชื้นเพิ่มขึ้นถั่วลิสงสามารถเกิดความพรุนได้สูงกว่า 3.11 ความเร็วสุดท้าย (Terminal Velocity) ความเร็วสุดท้าย (Terminal Velocity) ของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) Figure14 Effect of moisture content on termainal velocity of peanut KHONKAEN 84-8 kernel. ซึ่งมีแนวโน้มสอดคล้องกับการทดลองถั่วลิสงและเมล็ด Aydin (2006) เมล็ดถั่วแดง ISIK (2007) อัลมอนด์และเมล็ด Aydin (2003) ถั่วลันเตา Yalcın (2006) และถั่วพิสทาชิโอ Kashaninejad (2005) โดยพบว่าถั่วลิสงมีแนวโน้มที่สูงกว่าถั่วพิสทาชิโอและถั่วลันเตา หมายถึงเมื่อความชื้นเพิ่มขึ้นถั่วลิสงต้องใช้ความเร็วลมที่มากขึ้นเป็นอัตราส่วนที่สูงกว่าทาชิโอและถั่วลันเตา 3.12 สัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) สัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) เป็นลักษณะทางกายภาพที่องศาและพื้นผิวกับการเริ่มเคลื่อนที่ของวัสดุ สามารถประยุกต์ใช้ในการออกแบบสายพานเพื่อการลำเลียงขนส่งในกระบวนการผลิต สัมประสิทธิ์ความเสียดทานสถิตของเมล็ดถั่วลิสงพันธุ์ขอนแก่น 84-8 จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) Figure 15 Effect of moisture content on static friction coefficient of peanut KHONKAEN 84-8 kernel. ซึ่งมีแนวโน้มสอดคล้องกับการทดลองถั่วลิสงและเมล็ด Aydin, (2006) โดยพื้นผิวยาง มีค่าสัมประสิทธิ์แรงเสียดทานสูงที่สุด ตามด้วย พื้นผิวอลูมิเนียม และพื้นผิวไม้ตามลำดับ ซึ่งสอดคล้องกับถั่วลันเตา Yalcın (2006) 4. สรุปผลการทดลอง 4.1 ค่าความยาว (L) ความหนา (T) และความกว้าง (W) มีความสัมพันธ์แบบเป็นเชิงเส้นตรงกับค่าความชื้นที่เพิ่มขึ้น และมีจำนวนการกระจายตัวในเมล็ดขนาดกลาง (9.00 mm -10.99 mm.) สูงที่สุด 4.2 เส้นผ่านศูนย์กลางเฉลี่ย (GMD) และ ความเป็นทรงกลม (Sphericity) มีความสัมพันธ์แบบเป็นเชิงเส้นตรงกับค่าความชื้นที่เพิ่มขึ้น 4.3 พื้นที่ภาพฉาย (Projected area) มีความสัมพันธ์แบบเป็นเชิงเส้นตรงกั
สมัครสมาชิก

สนับสนุนโดย / Supported By

  • บริษ้ท มาเรล ฟู้ดส์ ซิสเท็ม จำกัด จัดจำหน่ายเครื่องจักรและอุปกรณ์การแปรรูปอาหาร เช่น ระบบการชั่งน้ำหนัก, การคัดขนาด, การแบ่ง, การตรวจสอบกระดูก และการประยุกต์ใช้ร่วมกับโปรแกรมคอมพิวเตอร์ พร้อมกับบริการ ออกแบบ ติดตั้ง กรรมวิธีการแปรรูปทั้งกระบวนการ สำหรับ ผลิตภัณฑ์ ปลา เนื้อ และ สัตว์ปีก โดยมีวิศวกรบริการและ สำนักงานตั้งอยู่ที่กรุงเทพ มาเรล เป็นผู้ให้บริการชั้นนำระดับโลกของอุปกรณ์การแปรรูปอาหารที่ทันสมัย​​ครบวงจรทั้งระบบ สำหรับอุตสาหกรรม ปลา กุ้ง เนื้อ และสัตว์ปีก ต่างๆ เครื่องแปรรูปผลิตภัณฑ์สัตว์ปีก Stork และ Townsend จาก Marel อยู่ในกลุ่มเครื่องที่เป็นที่ยอมรับมากที่สุดในอุตสาหกรรม พร้อมกันนี้ สามารถบริการครบวงจรตั้งแต่ต้นสายการผลิตจนเสร็จเป็นสินค้า เพื่ออำนวยความสะดวกให้กับทุกความต้องการของลูกค้า ด้วยสำนักงานและบริษัทสาขามากกว่า 30 ประเทศ และ 100 เครือข่ายตัวแทนและผู้จัดจำหน่ายทั่วโลก ที่พร้อมทำงานเคียงข้างลูกค้าเพื่อขยายขอบเขตผลการแปรรูปอาหาร Marel Food Systems Limited. We are supply weighing, grading, portioning, bone detection and software applications as well as complete turn-key processing solutions for fish, meat and poultry. We have service engineer and office in Bangkok. Marel is the leading global provider of advanced food processing equipment, systems and services to the fish, meat, and poultry industries. Our brands - Marel, Stork Poultry Processing and Townsend Further Processing - are among the most respected in the industry. Together, we offer the convenience of a single source to meet our customers' every need. With offices and subsidiaries in over 30 countries and a global network of 100 agents and distributors, we work side-by-side with our customers to extend the boundaries of food processing performance.
  • วิสัยทัศน์ของบริษัท คือ การอยู่ในระดับแนวหน้า "ฟอร์ฟร้อนท์" ของเทคโนโลยีประเภทต่างๆ และนำเทคโนโลยีนั้นๆ มาปรับใช้ให้เหมาะสมกับอุตสาหกรรมและกระบวนการผลิตในประเทศไทย เพื่อผลประโยชน์สูงสุดของลูกค้า บริษัท ฟอร์ฟร้อนท์ ฟู้ดเทค จำกัด เชื่อมั่นและยึดมั่นในอุดมการณ์การดำเนินธุรกิจ กล่าวคือ จำหน่าย สินค้าและให้บริการที่มีคุณภาพสูง ซึ่งเหมาะสมกับความต้องการของลูกค้า ด้วยความซื่อสัตย์และความตรงต่อเวลา เพื่อการทำธุรกิจที่ประสบความสำเร็จร่วมกันระยะยาว Our vision is to be in the "forefront" of technology in its field and suitably apply the technology to industries and production in Thailand for customers' utmost benefits. Forefront Foodtech Co., Ltd. strongly believes in and is committed to our own business philosophy which is to supply high quality products and service appropriately to each customer's requirements with honesty and punctuality in order to maintain long term win-win business relationship. Forefront Foodtech Co., Ltd. is the agent company that supplies machinery and system, install and provide after sales service as well as spare parts. Our products are: Heinrich Frey Maschinenbau Gmbh, Germany: manufacturer of vacuum stuffers and machinery for convenient food Kronen GmbH, Germany: manufacturer of machinery for vegetable and fruits from washing to packing Nock Fleischerei Maschinenbau GmbH, Germany: manufacturer of skinning machines, membrane skinning machine, slicers and scale ice makers K + G Wetter GmbH, Germany: manufacturer of grinders and bowl cutters Ness & Co. GmbH, Germany: manufacturer of smoke chambers, both stand alone and continuous units Dorit DFT GmbH, Germany: manufacturer of tumblers and injectors Maschinenfabrik Leonhardt GmbH, Germany: manufacturer of dosing and filling equipment
  • We are well known for reliable, easy-to-use coding and marking solutions which have a low total cost of ownership, as well as for our strong customer service ethos. Developing new products and a continuous programme of improving existing coding and marking solutions also remain central to Linx's strategy. Coding and marking machines from Linx Printing Technologies Ltd provide a comprehensive solution for date and batch coding of products and packaging across manufacturing industries via a global network of distributors. In the industrial inkjet printer arena, our reputation is second to none. Our continuous ink jet printers, laser coders, outer case coders and thermal transfer overprinters are used on production lines in many manufacturing sectors, including the food, beverage, pharmaceutical, cosmetics, automotive and electronic industries, where product identification codes, batch numbers, use by dates and barcodes are needed. PTasia, THAILAND With more than 3,700 coding, marking, barcode, label applicator, filling, packing and sealing systems installed in THAILAND market. Our range is includes systems across a wide range of technologies. To select the most appropriate technology to suit our customers. An excellent customer service reputation, together with a reputation for reliability that sets standards in the industry, rounds off the PTAsia offering and provides customers with efficient and economical solutions of the high quality. Satisfyingcustomers inTHAILAND for 10 years Our 1,313 customers benefit from our many years of experience in the field, with our successful business model of continuous improvement. Our technical and service associates specialise in providing individual advice and finding the most efficient and practical solution to every requirment. PTAsia extends its expertise to customers in the food, beverage, chemical, personal care, pharmaceutical, medical device, electronics, aerospace, military, automotive, and other industrial markets.