News and Articles

มอก.ตู้อบไฟฟ้าแบบตั้งโต๊ะ

มอก.ตู้อบไฟฟ้าแบบตั้งโต๊ะ


หมวดหมู่: มาตรฐานอุตสาหกรรมเครื่องจักรและอุปกรณ์แปรรูปอาหาร 2559 [มาตรฐานอุตสาหกรรมเครื่องจักรและอุปกรณ์แปรรูปอาหาร]
วันที่: 23 มิถุนายน พ.ศ. 2559

เพื่อเป็นการส่งเสริมและยกระดับผลิตภัณฑ์อุตสาหกรรมของตู้อบไฟฟ้าแบบตั้งโต๊ะ ซึ่งมีใช้ทั่วไปในอุตสาหกรรมอาหาร มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้จัดทำขึ้นตามความร่วมมือด้านการกำหนดมาตรฐานระหว่างสำนักงานมาตรฐานผลิตภัณฑ์อุตสาหกรรมกับอุตสาหกรรมพัฒนามูลนิธิเพื่อสถาบันอาหาร
มาตรผลิตภัณฑ์อุตสาหกรรมนี้กำหนดขึ้นโดยอาศัยข้อมูลจากผู้ทำและเอกสารต่อไปนี้เป็นแนวทาง

IS. 5790-1985 SPECIFICATION FOR DOMESTIC ELECTRIC COOKING OVENS

มอก 1375-2547 ความปลอดภัยของเครื่องใช้ไฟฟ้าในที่อยู่อาศัยและเครื่องใช้ไฟฟ้าอื่นที่คล้ายกัน ข้อกำหนดทั่วไป

มอก 1641-2552 เตาย่าง เตาปิ้ง ด้านความปลอดภัย

มอก 1913-2554 เตาหุงต้ม หัวเตา ตู้อบ ชนิดใช้ประจำที่

 


มาตรฐานผลิตภัณฑ์อุตสาหกรรมตู้อบไฟฟ้าแบบตั้งโต๊ะ

1. ขอบข่าย

1.1 มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้ครอบคลุมเฉพาะตู้อบไฟฟ้าแบบตั้งโต๊ะสำหรับใช้ในที่อยู่อาศัย โดยแรงดันไฟฟ้าที่กำหนดไม่เกิน 250 V มาตรฐานอุตสาหกรรมนี้ไม่ครอบคลุมตู้อบไฟฟ้าแบบตั้งโต๊ะที่ใช้ในเชิงพานิชย์และไม่ครอบคลุมเตาไมโครเวฟชนิดร่วม (Combination Microwave Oven) ตามมอก. 1773



2. เอกสารอ้างอิง

ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 2.

 

3. บทนิยาม

ให้เป็นไปตามที่กำหนดในข้อ 3. มอก. 1375 และ มอก. 1913 ยกเว้นข้อต่อไปนี้

3.1 ตู้อบไฟฟ้าแบบตั้งโต๊ะ ซึ่งต่อไปในมาตรฐานนี้จะเรียกว่า "ตู้อบไฟฟ้า" หมายถึง เครื่องใช้ไฟฟ้าที่ใช้สำหรับ อบ ย่าง หรืออุ่น โดยแหล่งความร้อนมาขดลวดความร้อน มีประตูปิด-เปิดและสร้างในลักษณะที่มีชั้นวางภาชนะบรรจุอาหารและหรือมีแท่งสำหรับเสียบอาหารให้หมุนได้

3.2 ความจุของตู้ หมายถึง ปริมาตรสูงสุดภายในตู้อบไฟฟ้าที่สามารถวางอาหารได้ มีหน่วย เป็น ลิตร

 

4. ส่วนประกอบและการทำ

4.1 ส่วนประกอบ

4.1.1 ตู้อบไฟฟ้ามีส่วนประกอบหลัก ดังแสดงตามรูปที่ 1

 

 

4.2 ส่วนประกอบและการทำ

ให้เป็นไปตามที่กำหนดใน มอก. 1375 ข้อ 4. ยกเว้นข้อต่อไปนี้

4.2.1 ส่วนประกอบ

4.2.1.1 วัสดุ

(1) ชิ้นส่วนและอุปกรณ์ที่สัมผัสกับอาหาร (food area) เช่น ถาดวาง แท่งเสียบ ต้องทำจากวัสดุ ชั้นคุณภาพใช้กับอาหาร

(2) ชิ้นส่วนและอุปกรณ์ที่มีโอกาสสัมผัสกับอาหาร (splash area) เช่น ผนังด้านใน ตะแกรง ต้องทำจากวัสดุชั้นคุณภาพใช้กับอาหาร

(3) ชิ้นส่วนและอุปกรณ์ที่ไม่สัมผัสอาหาร (non-food area) เช่น ผนังด้านนอก โครงเครื่อง ควรมีผิวเรียบ

การทดสอบให้ตรวจสอบตามใบรับรอง

4.2.1.2 ชิ้นส่วนและอุปกรณ์

(1) หากมีอุปกรณ์ตั้งเวลา ต้องมีการส่งสัญญาณเสียงเตือนเมื่อครบเวลาที่ตั้งไว้ พัดลมให้มีตะแกรงป้องกันและถอดออกได้โดยใช้เครื่องมือเท่านั้น

(2) อุปกรณ์ควบคุมอุณหภูมิต้องมีแสดงขีดหรือสัญลักษณ์แสดงระดับอุณหภูมิที่ตั้งค่าเป็นองศาเซลเซียสที่ตัวเครื่องหรือในคู่มือให้ผู้ใช้ทราบ

(3) สายไฟฟ้าภายใน ให้เป็นไปตามที่กำหนดใน มอก. 1641 ข้อ 23.

(4) ส่วนประกอบที่เกี่ยวกับไฟฟ้า ให้เป็นไปตามที่กำหนดใน มอก. 1641 ข้อ 24.

(5) การต่อกับแหล่งจ่าย และสายอ่อนภายนอก ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 25.

(6) ขั้วต่อสายสำหรับตัวนำภายนอก ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 26.

(7) การเตรียมการสำหรับการต่อลงดิน ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 27.

(8) หมุดเกลียวและจุดต่อในระบบทางไฟฟ้า ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 28.

(9) ระยะห่างในอากาศ ระยะห่างตามผิวฉนวน และฉนวนตัน ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 29.

(10) ความทนความร้อนและไฟ ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 30.

(11) ความต้านทานการเป็นสนิม ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 31.

(12) การแผ่รังสี ความเป็นพิษและอันตรายที่คล้ายกัน ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 32.

4.3 การทำ

4.3.1 คุณลักษณะทั่วไป

4.3.1.1 ตู้อบไฟฟ้า และชิ้นส่วนต่าง ๆ ต้องสร้างให้แข็งแรง ส่วนประกอบภายในต้องแข็งแรงเพียงพอสำหรับการใช้งาน

4.3.1.2 รอยต่อ รอยเชื่อม และตะเข็บ ต้องอยู่ในสภาพปกติ แข็งแรง ไม่แหลมคม

4.2.1.3 กรณีที่อุณหภูมิของตู้อบสูงกว่า 250 oC ต้องติดตั้งเทอร์โมสแตต และมีไฟแสดงสถานะการทำงาน

4.3.1.4 ความต้านทานความชื้นให้เป็นไปตาม มอก 1641 ข้อ 15.

4.3.1.5 กระแสไฟฟ้ารั่ว และความทนทานทางไฟฟ้า ให้เป็นไปตาม มอก 1641 ข้อ 16.

4.3.1.6 การป้องกันโหลดเกินของหม้อแปลงไฟฟ้า และวงจรไฟฟ้าที่เกี่ยวข้อง ให้เป็นไปตามที่กำหนดใน มอก 1641 ข้อ 17.

การทดสอบทำโดยการตรวจพินิจ และการทดสอบสภาวะ

 

5. คุณลักษณะที่ต้องการ

5.1 อุณหภูมิที่กึ่งกลางตู้อบไฟฟ้าต้องมีอุณหภูมิแตกต่างกันไม่เกิน 30 oC การทดสอบให้ทำตามข้อที่ 8.3.1 และ 8.3.2

5.2 เวลาที่ใช้สำหรับการทำความร้อนที่ศูนย์กลางตู้อบให้เท่ากับ 180 oC ต้องไม่เกิน 20 นาที การทดสอบให้ทำตามข้อที่ 8.3.3

5.3 ตู้อบไฟฟ้าต้องมีความทนทาน เมื่อผ่านการทดสอบให้ทำตามข้อที่ 8.3.4 แล้วเครื่องต้องมีการทำงานเป็นปกติ

5.4 กำลังไฟฟ้าต้องไม่เกิน 5% ที่ผู้ทำระบุ การทดสอบให้ทำตามข้อที่ 8.3.5

6. เครื่องหมายและฉลาก และข้อกำหนด

ให้เป็นไปตามที่กำหนดใน. มอก. 1375 ข้อ 7. ข้อต่อไปนี้

6.1 ที่ตู้อบไฟฟ้าอย่างน้อยต้องมีตัวเลข อักษร หรือเครื่องหมายแจ้งรายละเอียดต่อไปนี้ ให้เห็นได้ง่าย ชัดเจน และถาวร

(1) มีคำว่า "ตู้อบไฟฟ้าแบบตั้งโต๊ะ"

(2) หมายเลขรหัสเครื่อง

(3) ความจุของตู้ เป็นลิตร

(4) กำลังทางไฟฟ้า เป็น kW V Hz

(5) ชื่อและที่อยู่ของผู้ทำ


6.2 ตู้อบไฟฟ้า ต้องมีคู่มือแนะนำการใช้ซึ่งอย่างน้อยต้องมีรายละเอียดดังต่อไปนี้

(1) ข้อปฏิบัติในการจัดการ การขนส่ง จัดเก็บ ติดตั้ง และ เริ่มการใช้งาน

(2) ข้อมูลความเสี่ยงที่อาจเกิดขึ้น และข้อแนะนำพร้อมวิธีการใช้งาน

(3) มิติของเครื่อง ความกว้างxความยาวxความสูง เป็น mm x mm x mm

(4) มวลของตู้อบไฟฟ้าเป็น kg

(5) กำลังทางไฟฟ้า เป็น kW V Hz

(6) รูปและชื่อของส่วนประกอบ

(7) คำแนะนำการใช้งาน

(7.1) ขั้นตอนการทำงานและขั้นตอนการวิเคราะห์ปัญหาและวิธีการแก้ปัญหาเบื้องต้น

(7.2) ข้อควรระวังที่อาจก่อให้เกิดอันตรายต่อผู้ใช้งาน และ/หรือ ความเสียหายต่อตู้อบไฟฟ้าและการดูแลรักษา

(8) ชื่อและที่อยู่ของผู้ทำ

7. การชักตัวอย่างและเกณฑ์ตัดสิน

7.1 รุ่นในที่นี้ หมายถึง ตู้อบไฟฟ้ารุ่น (model) ที่ทำหรือส่งมอบ หรือซื้อขายในระยะเวลาเดียวกัน

7.2 การชักตัวอย่างและการตัดสิน ให้เป็นไปตามแผนการชักตัวอย่างที่กำหนดต่อไปนี้ หรืออาจใช้

แผนการชัก ตัวอย่างอื่นที่เทียบเท่ากันทางวิชาการกับแผนที่กำหนดไว้

7.2.1 การชักตัวอย่าง

ให้ชักตัวอย่าง โดยวิธีสุ่มจากรุ่นเดียวกันจำนวน 1 เครื่อง

7.2.2 เกณฑ์ตัดสิน

ตัวอย่างตู้อบไฟฟ้าต้องเป็นไปตามข้อ 4. ข้อ 5. และข้อ 6. ทุกรายการ จึงจะถือว่าตู้อบไฟฟ้ารุ่นนั้นเป็นไปตามมาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้

 

8. การทดสอบ

8.1 ข้อกำหนดทั่วไปในการหาค่าต่าง ๆ และอุปกรณ์วัดในการทดสอบให้เป็นดังนี้

8.1.1 เวลา

ใช้นาฬิกาจับเวลาที่มีความละเอียด 1s

7.1.2 อุณหภูมิ

ใช้สายเทอร์มอคัปเปิล มีความละเอียด 0.1oC 

7.1.3 กำลังไฟฟ้า

ใช้เครื่องวัดกำลังไฟฟ้าชนิด Watt meter ที่มีความละเอียด 1 W

8.2 การเตรียมสภาวะทดสอบ

8.2.1 สภาวะห้องสำหรับทดสอบและอุณหภูมิภายในตู้อบก่อนการทดสอบคือ 25 ºC ± 2 ºC

8.2.2 ความต่างศักย์ไฟฟ้า อยู่ในช่วง ±2.5% ที่ผู้ทำระบุตลอดการทดสอบ

8.2.3 ติดตั้งเทอร์โมคับเปิล (thermocouple) ที่จุดกึ่งกลางของตู้อบไฟฟ้า


8.3 การทดสอบ 

8.3.1 การทดสอบอุณหภูมิตู้อบไฟฟ้าที่อุณหภูมิ 180 ºC 

(1) ตั้งค่าอุณหภูมิตู้อบไฟฟ้าที่ 180±4 ºC 

(2) เปิดตู้อบให้ทำงานพร้อมบันทึกอุณหภูมิศูนย์กลางทุก 30s 

(3) เมื่ออุณหภูมิศูนย์กลางตู้อบถึง 180 ºC แล้วปล่อยให้ตู้อบไฟฟ้าเข้าสู่ภาวะคงตัว โดยให้เปิดทิ้งไว้ อีก 60 min 

(4) ให้ทดสอบต่อไปอีกเป็นเวลา 15 min 

(5) คำนวณหาอุณหภูมิต่างกันสูงสุด (Tdiff) โดยนำค่าอุณหภูมิสูงสุด (Tmax) อุณหภูมิต่ำสุด (Tmin) ที่บันทึกได้มาคำนวณตามสมการ


Tdiff = Tmax - Tmin


8.3.2 การทดสอบอุณหภูมิตู้อบไฟฟ้าที่อุณหภูมิ 240 ºC 

การทดสอบให้ทำเช่นเดียวกับการทดสอบในข้อ 8.3.1 แต่ให้ตั้งระดับอุณหภูมิของตู้อบไฟฟ้าที่ อุณหภูมิ 240 ºC กรณีที่ตู้อบมีอุณหภูมิสูงสุดต่ำกว่านี้ให้ตั้งค่าที่อุณหภูมิสูงสุดที่ทำได้

8.3.3 การทดสอบเวลาในการให้ความร้อนถึง 180 ºC 

ให้ใช้ข้อมูลในการทดสอบในข้อ 8.3.1 โดยให้อ่านค่าเวลาที่ตู้อบมีอุณหภูมิถึง 180 ºC

8.3.4 การทดสอบความทนทาน

ให้ตั้งค่าอุณหภูมิสูงสุดที่เครื่องทำได้ กรณีที่ตู้อบอุปกรณ์ควบคุมอุณหภูมิอัตโนมัติ ให้เปิดเครื่องทำงานไปจนกว่าตู้อบทำงานเป็นเวลารวมเท่ากับ 300 hr ไม่นับช่วงเวลาที่ตู้อบตัดการทำงาน แต่หากตู้อบไม่เป็นระบบอัตโนมัติ ให้ทดสอบโดยการเปิดให้เครื่องทำงานเป็นเวลารวมเท่ากับ 300 hr โดยให้เปิดเครื่อง 3 hr แล้วหยุด 1 hr สลับไปจนกว่าตู้อบทำงานครบ 300 hr

8.3.5 การทดสอบพลังงานไฟฟ้า 

ให้ตั้งอุณหภูมิของตู้อบไฟฟ้าสูงสุด จากนั้นเปิดให้เครื่องทำงาน พร้อมบันทึกค่าการใช้พลังงานไฟฟ้าทุก 5s จนกระทั่งอุณหภูมิในตู้อบมีค่าคงที่ ให้อ่านค่าพลังงานไฟฟ้าที่ใช้สูงสุดในการทดสอบต้องไม่เกิน 5% ของค่าที่ผู้ทำระบุ

 



ข่าวและบทความที่เกี่ยวข้อง
บทที่ 5
1.ผลการตรวจจุลินทรีย์ของอากาศและน้ำละลายปลาทูน่า ตารางที่1 ผลของปริมาณจุลินทรีย์ในอากาศและน้ำละลายปลาที่สภาวะต่างๆ จากการทดลองละลายปลาทูน่าโดยใช้น้ำเป็นตัวกลางในการให้ควารมร้อนที่สภาวะน้ำนิ่ง น้ำวน และน้ำอลวน พบว่า ในน้ำหลังการละลายของทั้ง 3 สภาวะมีปริมาณจุลินทรีย์มากกว่าน้ำก่อนการละลาย โดยปริมาณจุลินทรีย์ที่สภาวะน้ำอลวนมีปริมาณมากที่สุดทั้งที่อากาศ น้ำก่อนการละลายและน้ำหลังการละลาย เนื่องจากน้ำที่ใช้ละลายในสภาวะดังกล่าวมีการให้ความร้อน อุณหภูมิที่ผิวของปลาจึงมีค่าสูง เหมาะสำหรับการเจริญเติบโตของจุลินทรีย์และจุลินทรีย์ยังถูกกระจายตัวจากการวนน้ำในถังละลาย ทำให้มีปริมาณมาก ส่วนการละลายในสภาวะน้ำนิ่ง อุณหภูมิที่ผิวของปลาเพิ่มขึ้นเล็กน้อย ไม่มีการกระจายของจุลินทรีย์เนื่องจากการวนน้ำ จึงพบปริมาณจุลินทรีย์น้อย รูปที่1 แผนภูมิแสดงปริมาณจุลินทรีย์ จากผลการตรวจพบปริมาณจุลินทรีย์ในการละลายด้วยน้ำที่สภาวะต่างๆ มีการปนเปื้อนจากจุลินทรีย์ในสภาวะน้ำอลวนมากที่สุด รองลงมาคือสภาวะน้ำวนและสภาวะน้ำนิ่งซึ่งมีการปนเปื้อนจากจุลินทรีย์น้อยที่สุดที่สามารถผ่านเข้าไปในกระบวนการผลิตได้ 2.ผลการละลายในสภาวะต่างๆ ตารางที่ 2 ผลของเวลาและขนาดน้ำหนักในสภาวะการละลายต่างๆ จะเห็นว่าการละลายปลาโดยใช้น้ำในสภาวะต่างๆ ปลาทูน่าขนาดน้ำหนักระหว่าง 1.4 - 1.6 กิโลกรัม เวลาการละลายในทั้ง 3 สภาวะการละลาย ใช้เวลาระหว่าง 70 - 104 นาที ปลาทูน่าขนาดน้ำหนักระหว่าง 1.6 - 1.7 กิโลกรัม ใช้เวลาระหว่าง 83 - 112 นาที และปลาทูน่าขนาดน้ำหนักระหว่าง 1.7 - 1.8 กิโลกรัม ใช้เวลาระหว่าง 93 - 133 นาที จึงสรุปว่าเวลาการละลายมากขึ้นเมื่อปลาทูน่ามีขนาดน้ำหนักที่มากขึ้น รูปที่2 ความสัมพันธ์ระหว่างอุณหภูมิและเวลาของการละลายปลาทูน่าขนาดใหญ่ในสภาวะน้ำนิ่ง รูปที่3 ความสัมพันธ์ระหว่างอุณหภูมิและเวลาของการละลายปลาทูน่าขนาดใหญ่ในสภาวะน้ำวน ผลการหาค่าสัมประสิทธิ์การพาความร้อน การหาค่าสัมประสิทธิ์การพาความร้อน (h) ของการละลายรูปแบบต่างๆ โดยการวัดอุณหภูมิภายในตัวปลามากกว่าหนึ่งตำแหน่ง แล้วเปรียบเทียบอุณหภูมิที่วัดได้จากการทดลองและอุณหภูมิที่ได้จากการทำนายเพื่อเลือกค่าสัมประสิทธิ์การพาความร้อนที่ให้ค่า Standard Error Mean (SE) ต่ำสุดโดย SE. คำนวณได้จากสมการ รูปที่4 Experimental validation of tuna temperature during thawing with still water จากกราฟแสดงเวลาที่ใช้ในการละลายปลาทูน่า สภาวะน้ำนิ่ง ค่าสัมประสิทธิ์การพาความร้อนของน้ำที่ให้ค่า SE (Std. Error Mean) ต่ำสุด ปลาทูน่าน้ำหนักขนาด 1417.89 g น้ำหนักขนาด 1686.93 g และน้ำหนักขนาด 1877.09 g สามารถทำนายค่าสัมประสิทธิ์การพาความร้อนเท่ากับ 18 W/m2.K ที่เนื้อติดกับกระดูก (Backbone) SE = (0.67◦C) , 15 W/m2.K ที่เนื้อติดกับกระดูก SE = (0.97◦C) และ 16.5 W/m2.K ที่เนื้อติดกับกระดูก SE = (1.29◦C) ตามลำดับ รูปที่5 Experimental validation of tuna temperature during thawing with circulated water flowrate 350 l/min จากกราฟแสดงเวลาที่ใช้ในการละลายปลาทูน่า สภาวะน้ำวนอัตราการไหล 350 l/min ค่าสัมประสิทธิ์การพาความร้อนของน้ำที่ให้ค่า SE (Std. Error Mean) ต่ำสุด ปลาทูน่าน้ำหนักขนาด 1459.43 g น้ำหนักขนาด 1625.15 g และน้ำหนักขนาด 1767.77 g สามารถทำนายค่าสัมประสิทธิ์การพาความร้อนเท่ากับ 25 W/m2.K ที่เนื้อติดกับกระดูก (Backbone) SE = (0.48◦C) , 23 W/m2.K ที่เนื้อติดกับกระดูก SE = (0.71◦C) และ 20 W/m2.K ที่เนื้อติดกับกระดูก SE = (0.44◦C) ตามลำดับ รูปที่6 Experimental validation of tuna temperature during with chaotic water flowrate 350 l/min จากกราฟแสดงเวลาที่ใช้ในการละลายปลาทูน่า สภาวะน้ำอลวนอัตราการไหล 350 l/min ค่าสัมประสิทธิ์การพาความร้อนของน้ำที่ให้ค่า SE (Std. Error Mean) ต่ำสุด ปลาทูน่าน้ำหนักขนาด 1565.32 g น้ำหนักขนาด 1641.26 g และน้ำหนักขนาด 1884.41 g สามารถทำนายค่าสัมประสิทธิ์การพาความร้อนเท่ากับ 30 W/m2.K ที่เนื้อติดกับกระดูก (Backbone) SE = (0.82◦C) , 28 W/m2.K ที่เนื้อติดกับกระดูก SE = (1.6◦C) และ 27 W/m2.K ที่เนื้อติดกับกระดูก SE = (0.89◦C) ตามลำดับ ตารางที่3 แสดงขนาดน้ำหนัก ค่าสัมประสิทธิ์การพาความร้อน และ SE ของน้ำที่สภาวะต่างๆ จากตารางที่ 3.2 จะสังเกตเห็นว่า ค่าสัมประสิทธิ์การพาความร้อน สามารถแบ่งออกได้เป็นระดับอย่างชัดเจน ค่าสัมประสิทธิ์การพาความร้อน ระหว่าง 15 - 20 W/m2.K เป็นค่าสัมประสิทธิ์การพาความร้อนของการละลายในสภาวะน้ำนิ่ง ค่าสัมประสิทธิ์การพาความร้อนระหว่าง 20 - 25 W/m2.K เป็นค่าสัมประสิทธิ์การพาความร้อน ของสภาวะน้ำวนที่มีอัตราการไหล 350 ลิตร/นาที และค่าสัมประสิทธิ์การพาความร้อนระหว่าง 27 - 30 W/m2.K เป็นค่าสัมประสิทธิ์การพาความร้อน ของสภาวะน้ำอลวนที่มีอัตราการไหล 350 ลิตร/นาที คณะผู้วิจัย จเร วงษ์ผึ่ง วรมน อนันต์ วสันต์ อินทร์ตา
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดข้าวบาร์เลย์
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดข้าวบาร์เลย์ (Effect of moisture content on some physical properties of Barley) สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง วริศรา สาระนิตย์ , อริสรา เลียงประสิทธิ์ , เอกนุช แย้มเกษร, วสันต์ อินทร์ตา บทคัดย่อ การศึกษาสมบัติทางกายภาพของข้าวบาร์เลย์ (Barley) พิจารณาจากความชื้นฐานแห้งที่เมล็ดข้าวบาร์เลย์ได้รับในช่วง 2.52% ถึง 14.52% ทั้งหมด 5 ระดับ พบว่า [ค่าขนาด (Size) ความยาว (L) ความกว้าง (W) ความหนา (T) ] มีค่าอยู่ในช่วง4.00 -6.50 mm , 3.00 - 4.75 mm , 2.25 - 3.25 mm ตามลำดับ ค่าเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric Mean Diameter , GMD) มีค่าอยู่ในช่วง 3.30 - 4.17 mm ค่าความเป็นทรงกลม (Sphericity) มีค่าอยู่ในช่วง 0.66 - 1.06% ค่าน้ำหนัก 1,000 เมล็ดของเมล็ดข้าวบาร์เลย์ (1,000 seeds mass) มีค่าอยู่ในช่วง 35.91-41.94g ค่าความหนาแน่นเนื้อ (True density) มีค่าอยู่ในช่วง 1.38 - 1.65 g/ml ค่าความพรุน (Porosity) มีค่าอยู่ในช่วง 42.2040-46.3863% และค่าความเร็วสุดท้าย (Terminal Velocity) มีค่าอยู่ในช่วง 9.62 -13.20 rpm จะพบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มเพิ่มขึ้นแบบเป็นเชิงเส้น แต่ในทางกลับกันพบว่าค่าความหนาแน่นรวม (Bulk density) ค่าความหนาแน่นเนื้อ (True density) และค่าความเป็นทรงกลม (Sphericity) เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มลดลงแบบเป็นเชิงเส้น และเมื่อนำเมล็ดข้าวบาร์เลย์ที่มีความชื้นในระดับที่ต่างกันมาหาค่าสัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) กับพื้นผิววัสดุที่ต่างกัน 3 ชนิดคือ แผ่นยาง แผ่นไม้อัด และ แผ่นอลูมิเนียม พบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มที่เพิ่มขึ้นแบบเป็นเชิงเส้น 1.บทนำ ข้าวบาร์เลย์ (Barley) มีชื่อพฤกษศาสตร์คือ Hordeum vulgare L. เป็นพืชในวงศ์ POACEAE มีถิ่นกำเนิดในแถบซีเรียและอิรัก ซึ่งเชื่อว่าเป็นบริเวณที่มีการเพาะปลูกเป็นแห่งแรก ชาวกรีกและโรมันโบราณนิยมนำข้าวบาร์เลย์มาทำ ขนมปังและเค้ก ข้าวบาร์เลย์สามารถนำไปใช้ประโยชน์ได้หลายลักษณะ กว่า50%ของข้าวบาร์เลย์ที่ผลิตได้ทั่วโลกถูกนำไปใช้เป็นอาหารสัตว์รูปแบบต่างๆ ประมาณ 30%ของข้าวบาร์เลย์ที่ผลิตได้ถูกนำไปแปรรูปเป็นมอลต์เพื่อใช้ในอุตสาหกรรมการผลิตเบียร์ผลิตภัณฑ์แอลกอฮอล์ประเภทกลั่นและผลิตวิสกี้ อุตสาหกรรมผลิตภัณฑ์อาหาร เช่น อาหารเสริม ผลิตภัณฑ์ธัญชาติอบกรอบ และขนมอบ ในอุตสาหกรรมเคมีภัณฑ์ข้าวบาร์เลย์ถูกนำไปใช้ในอุตสาหกรรมการผลิตเคมีภัณฑ์ต่างๆเพื่อการแพทย์สิ่งทอและงานวิจัยทางวิทยาศาสตร์เช่น ผสมในอาหารสำหรับเชื้อโรค อีกทั้งยังมีคุณสมบัติในการช่วยลดความอ้วนได้เป็นอย่างดี โดยจากผลการศึกษาชิ้นใหม่ของสวีเดน ระบุว่า การทานข้าวบาร์เลย์ในมื้อเช้าช่วยลดความอ้วนที่มาจากการทานอาหารมื้อต่อๆ ไปของวันนั้นลงๆได้ ข้าวบาร์เลย์เป็นธัญพืชประเภทคาร์โบไฮเดรตที่มีเส้นใยอาหารสูง เป็นพืชตระกูลเดียวกับข้าวโดยมีลักษณะเป็นเมล็ดสีขาว เมล็ดมีลักษณะกลมรี ปลายเป็นร่องมีขนาดเล็กกว่าลูกเดือยแต่มีขนาดใหญ่กว่าข้าวสาลี ข้าวบาร์เลย์มีคุณค่าทางโภชนาการ (100 กรัม ) มีพลังงานทั้งหมด 352 kcal โดยข้าวบาร์เลย์ส่วนประกอบทางเคมีประกอบด้วย คาร์โบไฮเดรต 26% โปรตีน 9.9%เหล็ก 14% วิตามิน B6 13% โฟเลท 6%วิตามินK 3%แคลเซียม 3% วิตามิน B1 15% เหล็ก 11.1% (อ้างอิงจากhttp://nutritiondata.self.com/) เมื่อผู้ใหญ่ 20 คน ทานข้าวบาร์เลย์ในตอนเช้า เมล็ดธัญพืชจะลดการตอบสนองต่อน้ำตาลในเลือดลงร้อยละ 44 ในมื้อเที่ยง และร้อยละ 14 ในมื้อเย็น ยิ่งคุณมีระดับน้ำตาลในเลือดเพิ่มขึ้นน้อยเท่าไร ไขมันสะสมในร่างกายก็จะยิ่งน้อยลงเท่านั้น ต้องยกประโยชน์ให้กับปริมาณไฟเบอร์ชนิดละลายน้ำ ที่มีอยู่มากในข้าวชนิดนี้ ซึ่งใช้เวลาในการย่อยหลายชั่วโมง นอกจากนี้ ผู้เขียนรายงานวิจัยยังบอกว่าผลของเส้นใยอาหารที่มีต่อกลูโคสจะยังคงมีประสิทธิภาพอยู่ แม้จะถูกย่อยแล้วก็ตาม (อ้างอิงจาก www.plapra.exteen.com) การศึกษาสมบัติทางกายภาพของเมล็ดข้าวบาร์เลย์นี้มีความสำคัญต่อการออกแบบเครื่องมือ เครื่องจักรและกระบวนการสำหรับแปรรูปข้าวบาร์เลย์ เช่น การทำความสะอาด การคัดแยก การขนส่งลำเลียง การอบแห้ง ตลอดจนการเก็บรักษา และสามารถนำไปประยุกต์ใช้ในด้านอื่นๆ 2.วัสดุและวิธีการทดลอง 2.1 วิธีการเตรียมวัตถุดิบ เตรียมเมล็ดข้าวบาร์เลย์ที่หาซื้อจากห้างสรรพสินค้าที่แผนกธัญพืช โดยใช้ข้าวบาร์เลย์ ตราไร่ทิพย์ บรรจุถุงละ 500 กรัม นำมาคัดแยกเมล็ดที่ไม่สมบูรณ์ออก เลือกใช้เฉพาะเมล็ดที่สมบูรณ์และมีขนาดใกล้เคียงกัน 2.2 การหาค่าความชื้น ค่าความชื้นเริ่มต้นของตัวอย่างเมล็ดข้าวบาร์เลย์ สามารถหาได้จากการ แบ่งตัวอย่างออกเป็น 3 ชุดการทดลอง โดยชั่งน้ำหนักจากเครื่องชั่งไฟฟ้า ที่มีค่าความละเอียดอยู่ที่ 0.0001 g ใส่ลงในถาดฟรอยด์ที่เตรียมไว้ 1 ชุดการทดลองต่อ 1 ถาด จากนั้นนำตัวอย่างทั้ง 3 ชุด เข้าตู้อบลมร้อน (MEMMERT UFB 400 , ปะเทศเยอรมัน ) เพื่อหาความชื้นเริ่มต้น ที่อุณหภูมิ 105ºC เป็นเวลา 2 ชั่วโมง เมื่อครบระยะเวลาที่กำหนดแล้ว นำเมล็ดถั่วทั้ง 3 ชุด ไปพักไว้ที่ตู้ดูดความชื้น (Dessicator Northman รุ่น D36 , ) เพื่อรักษาระดับความชื้น จากนั้นนำตัวอย่างเมล็ดทั้ง 3 ชุด มาชั่งน้ำหนักทีละชุด เพื่อคำนวณหาความชื้นเริ่มต้นเฉลี่ย โดยหาจากสูตรการหาเปอร์เซ็นต์ความชื้นเริ่มต้นฐานเปียก (%Wb) ดังสมการ 2.3 การปรับความชื้น นำเมล็ดข้าวบาร์เลย์มาปรับความชื้นทั้งหมด 5 ระดับ ซึ่งอยู่ในช่วง2.52% ถึง 14.52% โดยแบ่งใส่ถุงพลาสติก ถุงละ 1,000 เมล็ด นำมาปรับความชื้น โดยความชื้นแรกเป็นความชื้นเริ่มต้นของเมล็ดข้าวบาร์เลย์ (ไม่ต้องปรับความชื้น) ปรับค่าความชื้นโดยการเติมน้ำสะอาด โดยสามารถคำนวณปริมาณน้ำที่ต้องเติมได้จากสมการ Mc คือ น้ำหนักน้ำที่ต้องการเติม (g) Wi คือ น้ำหนักเมล็ด (g) Mi คือ ความชื้นเริ่มต้น (%Wb) Mf คือ ความชื้นที่ต้องการ (%Wb) หลังจากเติมน้ำสะอาดครบทั้ง 4 ถุงแล้ว นำถุงมาปิดผนึก จากนั้นเก็บไว้ในตู้เย็นที่อุณหภูมิ 5 ºC เป็นเวลา 7 วัน โดยเขย่าถุงทุกๆ 2 วัน เพื่อให้ความชื้นของเมล็ดข้าวบาร์เลย์ภายในถุงแพร่กระจายได้อย่างทั่วถึง 2.4 ขนาด ใช้เวอร์เนียคาร์ลิปเปอร์ในการวัดเพื่อหาขนาดของเมล็ดข้าวบาร์เล่ย์เพื่อหาค่า ความยาว (L) ความกว้าง (W) และความหนา (T) โดยวัดเมล็ดจำนวน 100 เมล็ด ดังแสดงในรูป รูปที่1 ลักษณะการวัดเพื่อหาขนาดของเมล็ด 2.5 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต. (Geometric Mean..Diameter,GMD) คำนวณได้จากการนำค่า L,W,T ที่ได้จากการวัดขนาดความกว้าง ความยาว และความหนาของเมล็ดข้าวบาร์เลย์ จำนวน 100 เมล็ดนำค่าที่ได้ไปคำนวณในสูตร 2.6 ความเป็นทรงกลม (Sphericity) ความเป็นทรงกลมเป็นค่าที่ใช้บอกความใกล้เคียงความเป็นทรงกลมของเมล็ดข้าวบาร์เล่ย์ สามารถคำนวณได้จากสมการ 2.7 น้ำหนัก.1,000.เมล็ด.. (1,000..seeds..Mass) นำเมล็ดข้าวบาร์เลย์ที่ผ่านการคัดมาจำนวน 1,000 เมล็ด แล้วนำไปชั่งบนเครื่องชั่งดิจิตอล ที่มีค่าความละเอียดอยู่ที่ 0.0001 กรัม โดยแต่ละความชื้นต้องนำไปชั่งจำนวน 3 ครั้งเพื่อคำนวณหาค่าเฉลี่ย 2.8.พื้นที่ภาพฉาย.. (Projected..area) พื้นที่ภาพฉาย (projected area) หมายถึง พื้นที่ (area) ที่ได้จากการฉายภาพวัสดุลงบนแผ่นระนาบ โดยวิธีการวิเคราะห์ด้วยภาพถ่าย โดยนำภาพถ่ายที่ได้ไปวิเคราะห์ด้วยโปรแกรม Adobe Photoshop cs 5.5 2.9 ความหนาแน่นรวม (Bulk density , ρb) ความหนาแน่นรวม (bulk density) เป็นสมบัติทางกายภาพ (physical properties) ของวัสดุ หมายถึง ความหนาแน่น (density) ของวัสดุปริมาณมวล (bulk material) ทำการทดลองโดยกราเตรียมภาชนะทรงกระบอกที่ทราบปริมาตร และปรับระดับกรวยให้มีความสูงห่างจากแก้ว 25cm นำเมล็ดข้าวบาร์เลย์แต่ละความชื้นมากรอกใส่กรวย จากนั้นน้ำไม้บรรทัดมากดตรงกลางเพื่อนเกลี่ยเมล็ดที่เหนือขอบปากแก้วออก ความหนาแน่นรวมหาได้จากสูตร เมื่อ..Mb..คือ..น้ำหนักรวม-น้ำหนักภาชนะ (g) Vb..ใคือ..ปริมาตรภาชนะ (ml) 2.10 ความหนาแน่นเนื้อ (True density) ความหนาแน่นเนื้อ (solid density) อาจเรียกว่า ture density หรือ absolute density หมายถึง ความหนาแน่น (density) ของเนื้อวัสดุล้วนๆ ไม่รวมรูพรุน (pore) ในเนื้อวัสดุ หรือช่องว่างระหว่างชิ้นวัสดุ หากรวมช่องว่างระหว่างวัสดุ จะเป็นความหนาแน่นรวม (bulk density) วิธีการหาความหนาแน่นเนื้อ นำ Pychometer ขนาด 75 ml. ไปชั่งน้ำหนักและบันทึกค่า เติม เฮกเซน ลงใน Pychometer จนเต็ม นำไปชั่งน้ำหนักจากนั้นเทออก แล้วนำค่าที่ได้ไปคำนวณหาค่า ความหนาแน่นของเฮกเซน จากนั้นนำเมล็ดข้าวบาเลย์จำนวน 150 เมล็ดใส่ลงในขวด Pychometer แล้วนำไปชั่งน้ำหนักจดค่าที่ได้ เติมเฮกเซนลงไป นำไปชั่งน้ำหนักเพื่อหาค่า ความหนาแน่นของเมล็ดข้าวบาร์เลย์ แล้วนำปริมาตรของเมล็ดไปหาความหนาแน่นเนื้อได้จากสมการ เมื่อ..MS..คือ..น้ำหนักรวมของเมล็ด (g) V.....คือ..ปริมาตรต่อหนึ่งเมล็ด (ml) 2.11.ความพรุน.. (Porosity) ความพรุนคือค่าที่แสดงปริมาณช่องว่างที่มีอยู่เป็นอัตราส่วนระหว่างความหนาแน่นเนื้อต่อความหนาแน่นรวม ซึ่งสามารถคำนวณได้จากสมการ 2.12 ความเร็วสุดท้าย.. (Terminal..Velocity) ความเร็วสุดท้าย (terminal velocity) เป็นสมบัติทางกายภาพของวัสดุ ทางอากาศพลศาสตร์ (Aero dynamics) หาได้จากการนำเมล็ดข้าวบาร์เลย์ 1 เมล็ด วางลงบนตะแกรงของท่อลมแล้วปรับความเร็วลมเพิ่มขึ้นทีละน้อย จนเมล็ดสามารถลอยตัวได้อย่างอิสระภายในท่อลม แล้วนำเครื่องวัดความเร็วลมมาวัดค่าความเร็วลม จะได้ค่าความเร็วสุดท้ายของเมล็ดข้าวบาร์เลย์ 2.13 ค่าสัมประสิทธิ์ความเสียดทานสถิต (Static..Coefficient..of..friction) สัมประสิทธิ์ความเสียดทานสถิตคือค่าที่สามารถวัดได้จากการสุ่มเมล็ด มาจำนวน 10 เมล็ด แล้วนำมาวางบนพื้นผิววัสดุต่างกัน 3 ชนิด ได้แก่ พื้นผิวไม้อัด พื้นผิวอลูมิเนียม และพื้นผิวยาง ซึ่งพื้นผิวเหล่านี้ติดอยู่บนเครื่องวัดมุมเอียงจากนั้นให้ค่อยๆยกพื้นผิวด้านใดด้านหนึ่งขึ้นจนกระทั่งเมล็ดเริ่มกลิ้งไถลลงอย่างอิสระ อ่านค่ามุมที่เมล็ดเริ่มกลิ้งไถล โดยทำจนกระทั่งครบ 10 เมล็ด ทั้ง 3 พื้นผิว ในทุกๆความชื้น ซึ่งสามารถคำนวณหาสัมประสิทธิ์ความเสียดทานสถิตได้จาก รูปที่ 2 การวัดสัมประสิทธิ์ความเสียดทานสถิต ตารางที่ 1คุณสมบัติทางกายภาพของเมล็ด 3. ผลการทดลองและวิจารณ์ จากการศึกษาเปรียบเทียบคุณสมบัติทางกายภาพของเมล็ดข้าวบาร์เลย์ ที่ระดับความชื้นแตกต่างกัน 5 ระดับ 3.1 ขนาดของเมล็ดข้าวบาร์เลย์ รูปที่ 3 ความสัมพันธ์ระหว่างความกว้าง (W) กับปริมาณความชื้น รูปที่ 4 ความสัมพันธ์ระหว่างความยาว (L) กับปริมาณความชื้น รูปที่ 5 ความสัมพันธ์ระหว่างความหนา (T) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าขนาด (Size) ของเมล็ดข้าวบาร์เลย์ ทั้งด้านความกว้าง (W) ความยาว (L) และความหนา (T) ทั้ง 3 ด้าน จะมีค่าเพิ่มขึ้น (ขนาดเพิ่มขึ้น) เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) จากการทดลองสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.2 เส้นผ่านศูนย์กลางเฉลี่ย รูปที่6 ความสัมพันธ์ระหว่างเส้นผ่านศูนย์กลางเฉลี่ย (diameter) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นเส้นผ่านศูนย์กลางเฉลี่ย ของเมล็ดข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 3.57 ถึง 3.74 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.014x+3.3534 (R2= 0.995) เนื่องจากเมื่อปรับความชื้น โมเลกุลน้ำจะเข้าไปแทรกตัวอยู่ภายในเมล็ดทำให้เมล็ดมีขนาดใหญ่ขึ้นซึ่งสังเกตได้จากความกว้างและความหนามีค่าเพิ่มขึ้น (จากกราฟรูป3, 4) ดังนั้นจึงทำให้เส้นผ่านศูนย์กลางเฉลี่ยเพิ่มขึ้นด้วย ประโยชน์ของเส้นผ่านศูนย์กลางเฉลี่ยในทางอุตสาหกรรมอาหารมีความสำคัญในการออกแบบตะแกรงคัดขนาด โดยหากต้องการวัตถุดิบที่มีขนาดพอเหมาะสำหรับการแปรรูปอาหาร เราก็ออกแบบตะแกรงที่มีรูตะแกรงในขนาดที่ต้องการ หากวัตถุดิบมีขนาดเล็กเกินไปเมื่อตะแกรงเคลื่อนที่ก็จะหล่นลงไปในตะแกรงและถูกคัดทิ้งไป จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของi.Yalcm, C.Ozarslan, T.Akba (2005) ซึ่งศึกษาเมล็ดถั่ว (Pisum sativum) 3.3 ความเป็นทรงกลม รูปที่7 ความสัมพันธ์ระหว่างความเป็นทรงกลม (Sphericity) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความเป็นทรงกลม (Sphericity) ของเมล็ดข้าวบาร์เลย์จะมีแนวโน้มเป็นเส้นตรงโดยลดลงจาก 0.7622 ถึง 0.7535 (แปรผกผัน) ซึ่งมีสมการความสัมพันธ์: y=0.000x+0.760 (R2=0.974 ) ซึ่งจากผลการทดลองทำให้เราทราบว่าความเป็นทรงกลมลดลงเมื่อความชื้นเพิ่มขึ้น เป็นเพราะเมล็ดข้าวบาร์เลย์มีการขยายตัวหลังปรับความชื้นในด้วนยาวมากกว่าด้านกว้าง โดยค่าความเป็นทรงกลม ของแต่ละเมล็ด แต่ละสายพันธุ์ อาจจะมีการขยายตัวในทิศทางที่แตกต่างกันทำให้ค่าความเป็นทรงกลมมีค่ามากขึ้น หรือลดลงแล้วแต่เมล็ดที่ใช้ในการทดลอง ประโยชน์ของความเป็นทรงกลมในทางอุตสาหกรรมอาหารมีความสำคัญในการออกแบบการลำเลียงวัสดุ ระหว่างการเตรียมวัตถุดิบ และการแปรรูปอาหาร โดยวัตถุดิบที่มีความเป็นทรงกลมมาก มีแนวโน้มจะเคลื่อนที่ด้วยการกลิ้งบนพื้นเอียงส่วนวัตถุดิบที่มีความกลมน้อยจะเคลื่อนที่ด้วยการไถล ไปกับพื้น จากการทดลองสอดคล้องกับงานวิจัยของ Ibrahim Yalcm (2005) ซึ่งศึกษาเมล็ดผักชี 3.4 พื้นที่ภาพฉาย (Projected Area) รูปที่8 ความสัมพันธ์ระหว่างพื้นที่ภาพฉาย projected areaกับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นพื้นที่ภาพฉายของเมล็ดข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 0.1218 ถึง 0.1998 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.007x+0.117 (R2=0.667 ) หลังจากปรับความชื้นเมล็ดข้าวบาร์เลย์จะขยายใหญ่ขึ้นเนื่องจากโมเลกุลน้ำได้เข้าไปแทรกตัว เมื่อนำเมล็ดมาหาค่าพื้นที่ภาพภายจึงพบว่าเมล็ดข้าวบาร์เลย์จะมีพื้นที่ภาพฉายเพิ่มขึ้นเมื่อเพิ่มปริมาณความชื้นตามวิธีการข้างต้น พื้นที่ภาพฉายมีประโยชน์ในการคัดขนาด การคัดคุณภาพของวัตถุดิบ รวมทั้งผลิตภัณฑ์ทางอาหารโดยการวิเคราะห์ด้วยภาพถ่าย จากการทดลองสอดคล้องกับงานวิจัยของMajdiA. Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.5 น้ำหนัก 1,000 เมล็ด (1,000 Seeds Mass) รูปที่9 ความสัมพันธ์ระหว่างน้ำหนัก 1,000 เมล็ด (1,000 seeds Mass) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นน้ำหนักเมล็ดของเมล็ดข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 37.1 ถึง 41.57 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.384x+36.08 (R2=0.974 ) หลังจากปรับความชื้นเมล็ดข้าวบาร์เลย์จะขยายใหญ่ขึ้นและน้ำหนักจะเพิ่มขึ้นตามไปด้วยเนื่องจากมีมวลน้ำออสโมซิสเข้าไปภายในเมล็ด น้ำหนัก 1,000 เมล็ดมีผลในการการออกแบบขนาดของบรรจุภัณฑ์ไซโล (silo) สำหรับเก็บอาหาร การออกแบบการลำเลียงวัสดุ ระหว่างการเตรียมวัตถุดิบ และการแปรรูปอาหาร เป็นต้น จากการทดลองสอดคล้องกับงานวิจัยของISIK UNAL (2007) ซึ่งศึกษาเมล็ดถั่วขาวและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.6ความหนาแน่นเนื้อ (True density) รูปที่ 10 ความสัมพันธ์ระหว่างความหนาแน่นเนื้อ จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความหนาแน่นเนื้อของเมล็ดข้าวบาร์เลย์จะมีแนวโน้มเป็นเส้นตรงโดยลดลงจาก 1.5236 ถึง 1.4298 (แปรผกผัน) ซึ่งมีสมการความสัมพันธ์: y=0.007x+1.530 (R2=0.842 ) เมื่อปรับความชื้นน้ำที่ออสโมซิสเข้าไปมากขึ้น ดังนั้นอัตราระหว่างมวลน้ำกับมวลเนื้อของเมล็ดจะลดลงเพราะเราใส่น้ำเข้าไปในเมล็ดแต่มวลเนื้อยังคงเท่าเดิม ความหนาแน่นของเมล็ดจึงลดลง ความหนาเนื้อสามารถนำไปใช้เพื่อคำนวณหาค่าความพรุน (porosity) ซึ่งแสดงปริมาตรของที่ว่างภายในกองวัสดุ และสามารถในการออกแบบเครื่องจักรในการใช้ในงานอุตสาหกรรมต่างๆเช่น ออกแบบ เครื่องลำเลียง ไซโลเก็บอาหาร และการเลือกที่จะให้บรรจุภัณฑ์ให้เหมาะสมกับวัสดุ จากการทดลองสอดคล้องกับงานวิจัยของUzarslan (2002) ซึ่งศึกษาเมล็ดฝ้ายและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.7 ความหนาแน่นรวม (Bulk density) รูปที่11ความสัมพันธ์ระหว่างความหนาแน่นรวม (Bulk density) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความหนาแน่นรวมของเมล็ดข้าวบาร์เลย์จะมีแนวโน้มเป็นเส้นตรงโดยลดลงจาก 0.8726 ถึง 0.7685 (แปรผกผัน) ซึ่งมีสมการความสัมพันธ์: y=0.009x+0.900 (R2=0.939 ) เมื่ออัตราระหว่างมวลน้ำกับมวลเนื้อของเมล็ดจะลดลงเพราะเราใส่น้ำเข้าไปในเมล็ดแต่มวลเนื้อยังคงเท่าเดิม ดังนั้นความหนาแน่นรวมจึงลดลงเมื่อปริมาณน้ำมากขึ้น ค่าความหนาแน่นรวมสามารถใช้ในด้านอุตสาหกรรมเพื่อการออกแบบขนาดของบรรจุภัณฑ์ไซโล (silo) สำหรับเก็บอาหาร เป็นต้น นอกจากนั้นความหนาแน่นรวมยังสามารถนำไปใช้เพื่อคำนวณหาค่าความพรุน (porosity) ซึ่งแสดงปริมาตรของที่ว่างภายในกองวัสดุ จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของi.Yalcm, C.Ozarslan, T.Akba (2005) ซึ่งศึกษาเมล็ดถั่ว (Pisum sativum) 3.8 ปริมาตรต่อเมล็ด (Volume per seed) รูปที่ 12 ความสัมพันธ์ระหว่างปริมาตรต่อเมล็ด (Volume per seed) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นปริมาตรต่อเมล็ดของข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 0.0187 ถึง 0.0256 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.0006x+0.0155 (R2=0.86 ) เนื่องจากเมื่อปรับความชื้น โมเลกุลน้ำจะเข้าไปแทรกตัวอยู่ภายในเมล็ดทำให้เมล็ดมีขนาดใหญ่ขึ้นปริมาตรของเมล็ดก็จะเพิ่มขึ้นซึ่งสังเกตได้จากความกว้างและความยาวมีค่าเพิ่มขึ้น ประโยชน์ของปริมาตรของเมล็ดในทางอุตสาหกรรมใช้ในการกำหนดขนาดเครื่องบรรจุ เครื่องลำเลียง และไซโล เป็นต้น จากการทดลองสอดคล้องกับงานวิจัยของISIK UNAL (2007) ซึ่งศึกษาเมล็ดถั่วขาวและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.9 ความพรุน (Porosity) รูปที่ 13 ความสัมพันธ์ระหว่างความพรุน (Porosity) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความพรุนของข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 72.7081 ถึง 46.2512 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.375x+41.07 (R2=0.828 ) ความพรุนคือสัดส่วนช่องว่างที่มีอยู่ในกองวัสดุปริมาณมวล หรือ อัตราส่วนของปริมาตรช่องว่างหรืออากาศในกองวัสดุหรือในชิ้นวัสดุนั้นต่อปริมาตรรวมทั้งหมด ดังนั้นเมื่อปรับความชื้นปริมาณช่องว่างเพิ่มขึ้นจึงทำให้ ความพรุนมีค่าเพิ่มขึ้นตามการเพิ่มขึ้นของปริมาณความชื้น ความพรุนนำไปใช้ในอุตสาหกรรมในการประเมินแนวโน้มในการเน่าเสียของเมล็ดและการลำเลียงไปตามเครื่องจักร โดยเมล็ดที่มีความพรุนมากมีแนวโน้มที่จะมีน้ำหนักเบากว่าและลำเลียงสะดวกกว่า จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของi.Yalcm, C.Ozarslan, T.Akba (2005) ซึ่งศึกษาเมล็ดถั่ว (Pisum sativum) 3.10 ความเร็วสุดท้าย (Terminal Velocity) รูปที่ 14 ความสัมพันธ์ระหว่างความเร็วสุดท้าย (Terminal Velocity) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเมื่อปริมาณความชื้นเพิ่มขึ้นความเร็วสุดท้ายของข้าวบาร์เลย์ จะมีแนวโน้มเป็นเส้นตรงโดยเพิ่มขึ้นจาก 9.85 ถึง 12.59 (แปรผันตรง) ซึ่งมีสมการความสัมพันธ์: y=0.195x+10.39 (R2=0.544 ) ปัจจัยที่มีผลต่อค่าความเร็วสุดท้าย คือ ขนาด, รูปร่าง, พื้นที่ภาพฉาย ดังนั้นเมื่อปัจจัยเหล่านี้เพิ่มขึ้นตามการปรับระดับความชื้นจึงทำให้ความเร็วสุดท้ายเพิ่มขึ้นตาม โดยเราใช้ประโยชน์จากความเร็วสุดท้าย (TerminalVelocity) ในขั้นตอนการเตรียมวัตถุดิบ เช่น การทำความสะอาดด้วยลม เพื่อการคัดแยก การแยกขนาด รวมทั้งการทำแห้งด้วยวิธี Fluidized bed drier ,Pneumatic drier และจากผลการทดลองความสัมพันธ์ระหว่างความเร็วสุดท้ายกับปริมาณความชื้น ได้ผลการทดลองเป็นกราฟเส้นตรง คือความเร็วสุดท้ายเพิ่มขึ้น เมื่อความชื้นเพิ่มขึ้น จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababah (2006) ซึ่งศึกษาเมล็ดข้าวสาลีและสอดคล้องกับงานวิจัยของ M.Bulent Coskun, Cengiz Ozarslan (2004) ซึ่งศึกษาเมล็ดข้าวโพดหวาน 3.11 สัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) รูปที่ 15 ความสัมพันธ์ระหว่างสัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) กับปริมาณความชื้น จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าสัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) ของเมล็ดข้าวบาร์เล่ย์จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) โดยพื้นไม้เพิ่มขึ้นจาก 0.4287 ถึง 0.7382 พื้นอลูมิเนียมเพิ่มขึ้นจาก 0.5032 ถึง 0.6426 โดยพื้นยางเพิ่มขึ้นจาก 0.5776 ถึง 0.8399ซึ่งมีสมการความสัมพันธ์: ไม้ y=0.014x+0.062 ( ) อลูมิเนียม y=0.018x+0.446 ( ) ยาง y=0.009x+0.495 ( ) สัมประสิทธิ์ความเสียดทานเพิ่มขึ้นเนื่องจากเมื่อปรับความชื้นจะทำให้มวลของเมล็ดข้าวบาร์เล่ย์มาค่ามากขึ้น เนื่องจากสัมประสิทธิ์ขึ้นกับมวลและแรงโน้มถ่วงของโลก เมื่อมวลมากจะทำให้สัมประสิทธิ์ความเสียดทานเพิ่มขึ้นด้วยส่วนแรงโน้มถ่วงมีค่าคงที่ ประโยชน์ทางด้านอุตสาหกรรมคือสัมประสิทธิ์ความเสียดทานสถิตใช้ในการออกแบบเครื่องลำเลียงวัตถุดิบให้สามารถลำเลียงได้สะดวก รวดเร็วและง่ายมากยิ่งขึ้น จากการทดลองสอดคล้องกับงานวิจัยของMajdiA.Al-Mahasneh , TahaM.Rababa
ผลของความชื้นต่อคุณสมบัติทางกายภาพของลูกกระวาน
ผลของความชื้นต่อคุณสมบัติทางกายภาพของลูกกระวาน (Effect of moisture content on some physical properties of cardamom seed) ภาควิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง นฤพนธ์ พันธุ์หวยพงษ์ เบญจพร ตั้งนอบน้อม เบญจมาศ เหมวิบูลย์ วสันต์ อินทร์ตา บทคัดย่อ สมบัติทางกายภาพของลูกกระวานทดลองตามความชื้น ศึกษาที่ความชื้น 9.27%, 12.27%, 15.27%, 18.27 และ 21.27% w.b. (ความชื้นฐานเปียก) ของทั้งเมล็ด มีค่าเฉลี่ยของความสูง ความกว้าง ความหนา คือ 15.75 ,14.04 ,14.80 ตามลำดับที่ความชื้น 9.27%w.b จากการศึกษาแสดงให้เห็นว่ามวล 100 เมล็ดของลูกกระวานนั้นเพิ่มขึ้นจาก 46.45 เป็น 49.45 g, พื้นที่ภาพฉายเพิ่มจาก 1.18 cm² เป็น 1.29 cm² ,ความเป็นทรงกลมเพิ่มจาก 0.94 เป็น 0.96, ความหนาแน่นรวมเพิ่มขึ้น 0.24 g/cm³ เป็น 0.27 g/cm³ และความหนาแน่นเนื้อนั้นลดลงจาก 1.34 g/cm³ เป็น 0.52 g/cm³, ความพรุนนั้นลดลงจาก 78.46% เหลือ 51.72% ,ความเร็วสุดท้ายเพิ่มขึ้นจาก 9.63 m/s เป็น 10.21 m/s และค่าสัมประสิทธิ์แรงเสียดทานสถิตเพิ่มขึ้นจากพื้นผิวอลูมิเนียม (0.30-0.34) , พื้นไม้ (0.24-0.29) และพื้นยาง (0.34-0.49) ที่ความชื้นเพิ่มขึ้นจาก 9.27% ถึง 21.27% w.b. ที่ความชื้น 10.03%, 13.03%, 16.03%, 19.03 และ 22.03% w.b. (ความชื้นฐานเปียก) ของเมล็ดใน มีค่าเฉลี่ยของความสูง ความกว้าง ความหนา คือ 9.45, 7.98, 4.30 ตามลำดับที่ความชื้น 10.03%w.b จากการศึกษาแสดงให้เห็นว่ามวล 100 เมล็ดของลูกกระวานนั้นเพิ่มขึ้นจาก 20.94 เป็น 23.11g, พื้นที่ภาพฉายเพิ่มจาก 0.60 cm² เป็น 0.84 cm² ,ความเป็นทรงกลมเพิ่มจาก 0.72 เป็น 0.74, ความหนาแน่นรวมเพิ่มขึ้น 0.58 g/cm³ เป็น 0.63 g/cm³ และความหนาแน่นเนื้อนั้นลดลงจาก 1.19 g/cm³ เป็น 1.15 g/cm³, ความพรุนนั้นลดลงจาก 51.40% เหลือ 45.77% ,ความเร็วสุดท้ายเพิ่มขึ้นจาก 9.35 m/s เป็น 9.64 m/s และค่าสัมประสิทธิ์แรงเสียดทานสถิตเพิ่มขึ้นจากพื้นผิวอลูมิเนียม (0.41-0.46) , พื้นไม้ (0.51-0.63) และพื้นยาง (0.51-0.78) ที่ความชื้นเพิ่มขึ้นจาก 10.03% ถึง 22.03% w.b. บทนำ กระวานไทย (Amomumkrervanh Pierre) จัดเป็นพืชล้มลุก มีลำต้นอยู่ใต้ดินเรียกว่า เหง้า ก้านใบที่มีลักษณะเป็นกาบหุ้มซ้อนกันแน่นหนาแข็งแรง มีความสูงประมาณ 3 เมตร ใบเรียงสลับกัน แผ่นใบเรียวแหลม ใบยาวประมาณ 12 เซนติเมตร ขอบใบเรียบ ดอกกระวาน เจริญออกมาจากส่วนเหง้าใต้ดิน โผล่ขึ้นมาเหนือพื้นดินเป็นช่อ กลีบดอกสีเหลืองอ่อน ผลมีลักษณะกลมเป็นพวง เปลือกผิวเกลี้ยง เป็นพู ๆ มีสีออกนวล ๆ ลูกกระวานจะแก่ช่วงเดือนสิงหาคม - พฤศจิกายน เมล็ดกระวานมีขนาดเล็กสีน้ำตาล มีจำนวนมาก ทั้งผลและเมล็ดมีกลิ่นหอมคล้ายกับการบูร ช่วงเวลาที่ออกดอกจนผลแก่ใช้เวลาประมาณ 5 เดือน กระวานออกดอกให้ผลผลิตเพียงครั้งเดียว แล้วก็จะตายไป เช่นเดียวกับต้นกล้วย ต้นไผ่ แต่หน่อใหม่ก็จะเจริญโผล่ขึ้นมาแทนและเจริญให้ผลผลิตใหม่ต่อไปอีก การใช้ประโยชน์ของกระวาน แบ่งออกเป็น 2 อย่างคือ 1.) ใช้ในการประกอบอาหาร นำลูกกระวานที่ตากแห้งนำลูกระวานทั้งเมล็ดไปป่นใช้เป็นเครื่องเทศ ใส่ในน้ำพริกแกงเผ็ด แกงกะหรี่ แกงมัสมั่น พะแนง พะโล้ ใช้แต่งกลิ่นและสีของอาหารหลายชนิด เช่น ใส่ในเหล้า ขนมปัง เค้ก คุกกี้แฮม ส่วนผลอ่อนและหน่ออ่อนรับประทานแบบผัก 2.) การใช้ประโยชน์ทางยา กระวานมีสรรพคุณทางสมุนไพรได้ทุก ๆ ส่วน ทั้งราก ลำต้น หน่อ เปลือกลำต้น แก่นของลำต้น ใบ ผลแก่ เมล็ด เหง้าอ่อน ใช้แก้ท้องอืด แน่น จุก เสียด ขับเสมหะ รักษาโรคผิวหนัง แก้ลม ท้องเสีย ฯลฯ กระวานมีคุณค่าทางอาหารสูงประกอบด้วยสารอาหารและแร่ธาตุต่าง ๆ เช่น กระวานส่วนที่กินได้ 100 กรัม*ให้พลังงาน254.0 กิโลแคลอรีโปรตีน9.5gไขมัน6.3gคาร์โบไฮเดรต 39.7g แคลเซียม16.0gฟอสฟอรัส 23.0mgเหล็ก 12.6mg (*กองโภชนาการ กรมอนามัย กระทรวงสาธารณสุข) กระวาน มีน้ำมันหอมระเหย 7.9-8.4% ซึ่งมีกลิ่นหอม ประกอบด้วย การบูร (Camphor) ไพนิน (Pinene) ไลโมนีน (Limonene) เมอร์ซีน (Myrcene) น้ำมันหอมระเหยจากผลกระวานมีฤทธิ์ต้านเชื้อแบคทีเรียPseudomonas aeruginosa (7) (เภสัชกรหญิงสุนทรี สิงหบุตรา เภสัชกรด้านเภสัชสาธารณสุข, สรรพคุณสมุนไพร 200 ) วัตถุประสงค์ประสงค์เพื่อศึกษาผลของความชื้นที่มีต่อคุณสมบัติทางกายภาพของลูกกระวาน เพราะลูกกระวานคือพืชที่มีประโยชน์อย่างมาก เป็น พืชสมุนไพร และใช้ในด้านการครัวเป็นหลัก เป็นเครื่องเทศที่สำคัญชนิดหนึ่งในส่วนประกอบของอาหารหลากหลายชนิด จึงทำให้มีการผลิตลูกกระวานมากขึ้นในปัจจุบัน เพื่อนำความรู้ที่ได้ไปใช้ในการจัดเก็บรักษาผลผลิตที่ได้จากลูกกระวาน และสามารถส่งออกสู่ท้องตลาดทั้งภายในและภายนอกประเทศ โดยจะนำลูกกระวานมาทดลองตามคุณสมบัติทางกายภาพต่างๆเหล่านี้ การหาขนาด ,ความเป็นทรงกลม,น้ำหนัก 100 เมล็ด , พื้นที่ภาพฉาย , ความหนาแน่นรวม , ความหนาแน่นเนื้อ , ความพรุน , ความเร็วสุดท้าย , ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของวัสดุที่แตกต่างกัน 2. วัสดุและวิธีการทดลอง 2.1 วัสดุ เมล็ดลูกกระวาน (บริษัท S A O การเกษตร จำกัดที่อยู่ :8 หมู่ 8 ถนนรามอินทรา แขวงท่าแร้ง เขตบางเขน กทม. 10230) ที่นำมาใช้ในการทดลอง มาทำความสะอาด โดยการคัดเลือกเมล็ดพันธุ์ที่แตกออกจากเมล็ดพันธุ์ที่สมบูรณ์หาความชื้นเริ่มต้นของเมล็ดโดยการนำเอาลูกกระวาน (เมล็ดในและทั้งเมล็ด) ไปอบที่อุณหภูมิ 105 °Cเป็นเวลา 2 ชั่วโมง ปริมาณความชื้นฐานแห้งเริ่มต้นของทั้งเมล็ดเป็น 10.22% (db.) และเมล็ดใน11.15% (db.) 2.2 วิธีการทดลอง ปรับความชื้นที่ต้องการ หาได้โดยการเติมปริมาณน้ำ คำนวณจากความสัมพันธ์ของสมการดังต่อไปนี้ นำตัวอย่างที่เติมน้ำลงไปแล้วใส่ลงถุงพลาสติกแล้วปิดผนึกให้แน่นหนา โดยเก็บตัวอย่างไว้ในตู้เย็นที่อุณหภูมิ 5°Cเป็นเวลา 1 สัปดาห์ เพื่อให้ความชื้นกระจายสม่ำเสมอทั่วตัวอย่างก่อนที่จะนำไปทดลอง ต้องเอาตัวอย่างออกมาไว้ที่อุณหภูมิห้องเป็นเวลา 2 ชั่วโมงก่อนทำการทดลอง คุณสมบัติทางกายภาพที่ทำการทดลองมีระดับความชื้นดังนี้ (นำค่าความชื้นฐานแห้งไปแปลงเป็นความชื้นฐานเปียกก่อน) เมล็ดนอก9.27%, 12.27%, 15.27%, 18.27% และ21.27% (wb.) เมล็ดใน 10.03%, 13.03%, 16.03%, 19.03% และ 22.03% (wb.) ตามลำดับ ขนาดเฉลี่ยของเมล็ด100 เมล็ดใช้การวัดแบบสุ่ม โดยวัดสามมิติ คือ L (ความยาว) , W (ความกว้าง) , T (ความหนา) วัดโดยเวอร์เนียร์คาลิเปอร์ (Vernier Caliper ) ที่มีความละเอียด 0.01 mm ความเป็นทรงกลมของเมล็ดคำนวณโดยใช้ความสัมพันธ์ต่อไปนี้ มวล 100 เมล็ด หาจากเครื่องชั่งอิเล็กทรอนิกส์ที่สามารถ อ่านค่าได้ 4 ตำแหน่ง (0.0000 g) พื้นที่ภาพฉายของลูกกระวานหาได้โดยวิธีการวิเคราะห์ด้วยภาพถ่าย ถ่ายภาพลูกกระวานแต่ละระดับความชื้น ความชื้นละ 50 เมล็ดเมล็ดในและทั้งเมล็ด แล้วนำภาพถ่ายของลูกกระวานแต่ละเมล็ดมาเทียบกับภาพสี่เหลี่ยมจัตุรัสขนาด 1 cm² ความหนาแน่นรวมของลูกกระวาน ใช้ผลการทดลองจากการบรรจุภาชนะ 350 ml (ทั้งเมล็ด) และ 65 ml (เมล็ดใน) ตามลำดับ ซึ่งการบรรจุเมล็ดนั้นต้องให้ภาชนะบรรจุห่างจากปลายกรวย 15 cm แล้วนำไปชั่งน้ำหนักและคำนวณหาความหนาแน่นรวมโดยใช้สูตร ความหนาแน่นเนื้อ คือ อัตราส่วนระหว่างมวลของลูกกระวานและปริมาตรที่แท้จริง โดยใช้วิธีการแทนที่ของเหลว แต่การทดลองนี้นำเฮกเซนมาใช้ในการแทนน้ำเพราะเฮกเซนจะถูกเมล็ดพันธุ์ดูดซึมได้น้อย ความพรุนที่ระดับความชื้นต่างๆคำนวณได้จากความสัมพันธ์ระหว่างความหนาแน่นรวมและความหนาแน่นเนื้อ ดังนี้ เมื่อ เป็นค่าความพรุน (%) , เป็นความหนาแน่นรวม และ เป็นความหนาแน่นเนื้อ ความเร็วสุดท้าย คัดลูกกระวานจำนวน 10 เมล็ด โดยการนำลูกกระวานไปเป่าลมจากเครื่องเป่าลม โดยวัดความเร็วสุดท้ายจากความเร็วลม เราสามารถปรับความเร็วลมจากเครื่องปรับความถี่ โดยปรับให้ลูกกระวานลอยอย่างคงที่ที่ปลายกระบอก ทำเช่นนี้ทุกๆความชื้น ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของลูกกระวานทำการทดลองจากการนำวัสดุ 3 ชนิด ได้แก่ อลูมิเนียม พื้นไม้ และพื้นยาง มาทำการทดลองหาค่ามุมของแต่ละพื้นผิวของวัสดุแล้วนำไปแทนค่าในสูตร 3. ผลและการอภิปราย 3.1 ขนาดของลูกกระวาน ทั้งเมล็ดลูกกระวานและการกระจายขนาดเฉลี่ยของ 100 เมล็ด วัดที่ความชื้น 9.27% (w.b.) มีความกว้าง 14.04±0.81มม. , ความยาว 15.75±0.95มม.ความหนา 14.80±0.97มม. ความกว้างของเมล็ดที่มีขนาดอยู่ที่ 14.00 - 17.00มม. มีประมาณ 90% , ส่วนความยาวที่มีขนาดอยู่ที่ 13.00-15.00มม. มีประมาณ 84% , ส่วนความหนาที่มีขนาดอยู่ที่ 13.00-16.00มม. มีประมาณ 98% ที่ความชื้น 9.27% (w.b.) ขนาดของลูกกระวานเมล็ดในและการกระจายขนาดเฉลี่ยของ 100 เมล็ด วัดที่ความชื้น 10.03 % (w.b.) มีความกว้าง 9.45±0.59 มม. , ความยาว 7.98±0.75 มม.,ความหนา4.30±.074 มม. ความกว้างของเมล็ดที่มีขนาดอยู่ที่ 9.00-10.00 มม. มีประมาณ 66% , ส่วนความยาวที่มีขนาดอยู่ที่ 7.00-9.00 มม. มีประมาณ 82% , ส่วนความหนาที่มีขนาดอยู่ที่ 3.00-5.00 มม. มีประมาณ 77% ที่ความชื้น 10.03% (w.b.) 3.2 น้ำหนัก 100ทั้งเมล็ด น้ำหนัก 100 เมล็ด ของเมล็ดทั้งหมด ในน้ำหนัก 100 เมล็ด จะเพิ่มขึ้นเป็นเส้นตรงจาก 46.35 เป็น 49.46 กรัม จากปริมาณความชื้นที่ 9.27% เป็น 21.27% (w.b.) (รูปที่ 1) สำหรับมวล 100 เมล็ด ช่วงสมการเชิงเส้นได้ดังนี้ Y = 0.2627x + 43.687 (R² = 0.957) เมื่อความชื้นเพิ่มขึ้น มวลจะเพิ่มขึ้นด้วย น้ำหนัก 100 เมล็ดในน้ำหนัก 100 เมล็ด จะเพิ่มขึ้นเป็นเส้นตรงจาก 20.94 เป็น 23.11 กรัม จากปริมาณความชื้นที่ 10.03% เป็น 22.03% (w.b.) (รูปที่ 1) สำหรับมวล 100 เมล็ด ช่วงสมการเชิงเส้นได้ดังนี้ Y = 0.155x + 19.629 (R² = 0.888) เมื่อความชื้นเพิ่มขึ้น มวลจะเพิ่มขึ้นด้วย รูปที่ 1 Effect of moisture content on 100 seed mass (whole fruit, kernel) 3.3 พื้นที่ภาพฉาย พื้นที่ภาพฉายของลูกกระวานทั้งเมล็ด (รูปที่ 2) เพิ่มขึ้น 1.18 - 1.29 cm² ในขณะที่ปริมาณความชื้นเพิ่มขึ้นจาก 9.27% เป็น 21.27% (w.b.) สามารถหาสมการเชิงเส้นได้ดังนี้ Y = 0.0087x + 1.0937 (R² = 0.9494) พื้นที่ภาพฉายของลูกกระวานเมล็ดใน (รูปที่ 2) เพิ่มขึ้น 0.60 - 0.84 cm² ในขณะที่ปริมาณความชื้นเพิ่มขึ้นจาก 10.03% เป็น 22.03 (w.b.) สามารถหาสมการเชิงเส้นได้ดังนี้ Y = 0.02x + 0.4334 (R² = 0.9018) รูปที่ 2 Effect of moisture content on projected area (whole fruit, kernel) 3.4 ความเป็นทรงกลม ความเป็นทรงกลมของลูกกระวานทั้งเมล็ดเพิ่มขึ้นจาก 0.94 เป็น 0.96 มีการเพิ่มขึ้นตามความชื้นจาก 9.27% เป็น 21.27% (w.b.) ดังรูป (รูป 3) สามารถหาสมการเชิงเส้นได้ดังนี้ Y = 0.002x + 0.9195 (R² = 0.9) ความเป็นทรงกลมของลูกกระวานเมล็ดในเพิ่มขึ้นจาก 0.72 เป็น 0.74 มีการเพิ่มขึ้นตามความชื้นจาก 10.03% เป็น 22.03% (w.b.) ดังรูป (รูป 3) สามารถหาสมการเชิงเส้นได้ดังนี้ Y = 0.0013x + 0.7086 (R² = 0.8) รูปที่ 3 Effect of moisture content on sphericity (whole fruit, kernel) 3.5 ความหนาแน่นรวม ค่าของความหนาแน่นรวมของลูกกระวานทั้งเมล็ดที่ต่างระดับความชื้นจาก 9.27% เป็น 21.27% (w.b.) ที่แตกต่างกันจาก 0.24 เป็น 0.27 g/cm³ (รูป 4) ความหนาแน่นรวมของลูกกระวานสามารถเขียนเป็นสมการเชิงเส้นได้ดังนี้ Y = 0.0027x +0.2113 (R² = 0.9412) ค่าของความหนาแน่นรวมของลูกกระวานเมล็ดในที่ต่างระดับความชื้นจาก 10.03% เป็น 22.03%wb.ที่แตกต่างกันจาก 0.58 เป็น 0.63 g/cm³ (รูป 4) ความหนาแน่นรวมของลูกกระวานสามารถเขียนเป็นสมการได้ดังนี้ Y = 0.003x + 0.557 (R² = 0.613) รูปที่ 4 Effect of moisture content on bulk density (kernel) 3.6 ความหนาแน่นเนื้อ ความหนาแน่นเนื้อหรือความหนาแน่นจริงของทั้งเมล็ดของลูกกระวานมีค่าจาก 1.34 - 0.52 g/cm³ เมื่อระดับความชื้นเพิ่มขึ้นจาก 9.27% เป็น 21.27% (w.b.) (รูปที่ 5) ความหนาแน่นจริงมีความสัมพันธ์กับความชื้นดังนี้ Y = -0.0071x + 1.8922 (R² = 0.836) ความหนาแน่นเนื้อหรือความหนาแน่นจริงของเมล็ดในของลูกกระวานมีค่าจาก 1.19 - 1.15 g/cm³ เมื่อระดับความชื้นเพิ่มขึ้นจาก 10.03% เป็น 22.03% (w.b.) (รูปที่ 5) ความหนาแน่นจริงมีความสัมพันธ์กับความชื้นดังนี้ Y = -0.003x + 1.218 (R² = 0.703) รูปที่ 5 Effect of moisture content on true density (whole fruit, kernel) 3.7 ความพรุนของเมล็ด ความพรุนของลูกกระวานทั้งเมล็ดของลูกกระวานจะลดลงจาก 78.46% เป็น 51.72% โดยมาการเพิ่มขึ้นของความชื้นจาก9.27% เป็น 21.27% (w.b.) (รูป 6) ความสัมพันธ์ระหว่างความพรุนกับความชื้นแสดงได้ดังสมการ Y = -2.2333x + 96.161 (R² = 0.9006) ความพรุนของลูกกระวานเมล็ดในจะลดลงจาก 51.40% เป็น 45.77% โดยมาการเพิ่มขึ้นของความชื้นจาก 10.03% เป็น 22.03%wb. (รูป 6) ความสัมพันธ์ระหว่างความพรุนกับความชื้นแสดงได้ดังสมการ Y = -0.3797x + 54.142 (R² = 0.7435) รูปที่ 6 Effect of moisture content on porosity (whole fruit, kernel) 3.8 ความเร็วสุดท้าย ผลการทดลองสำหนับความเร็วปลายของลูกกระวานเมล็ดนอกที่ระดับความชื้นดังรูปที่ 7 พบว่าเป็นการเพิ่มเชิงเส้นตรง 9.63 - 10.44 m/s ของการเพิ่มความชื้นจาก 9.27% เป็น 21.27% (w.b.) สามารถแสดงความสัมพันธ์ระหว่างความเร็วสุดท้ายกับความชื้นได้ดังนี้ Y = 0.0511x + 9.2669 (R² = 0.612) ผลการทดลองสำหนับความเร็วปลายของลูกกระวานเมล็ดในที่ระดับความชื้นดังรูปที่ 7 พบว่าเป็นการเพิ่มเชิงเส้นตรง 9.35 - 9.64 m/s ของการเพิ่มความชื้นจาก 10.03% เป็น 22.03% (w.b.) สามารถแสดงความสัมพันธ์ระหว่างความเร็วสุดท้ายกับความชื้นได้ดังนี้ Y = -0.004x²+0.122x + 8.731 (R² = 0.612) รูปที่ 7 Effect of moisture content on terminal velocity (whole fruit, kernel) 3.9 ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของลูกกระวาน ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดนอกกับพื้นผิวอลูมิเนียม พื้นไม้ และพื้นยาง กับความชื้นที่ 9.27% ถึง 21.27% (%wb.) ดังแสดงในรูป (รูป 8-พื้นอลูมิเนียม ,พื้นไม้ ,พื้นยาง) จะสังเกตเห็นว่าค่าสัมประสิทธิ์แรงเสียดทานสถิตย์เพิ่มขึ้นในทุกๆพื้นผิวของทุกความชื้น เนื่องจากการยึดเกาะที่เพิ่มขึ้นระหว่างเมล็ดกับพื้นผิว เมื่อความชื้นเพิ่มขึ้นจาก 9.27% เป็น 21.27% (wb.) สามารถเขียนสมการความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดกับพื้นผิวอลูมิเนียม พื้นไม้ และพื้นยางได้ดังนี้ สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวอลูมิเนียม Y = 0.003x + 0.2702 (R² = 0.8804) สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวไม้ Y = 0.004x + 0.2109 (R² = 0.8571) สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวยาง Y = 0.0103x + 0.2342 (R² = 0.7347) รูปที่ 8 Effect of moisture content on coefficient of friction (aluminium ,wood, rubber) . (whole fruit) ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดในกับพื้นผิวอลูมิเนียม พื้นไม้ และพื้นยาง กับความชื้นที่ 10.03% ถึง 22.03% (w.b.) ดังแสดงในรูป (รูป 9-พื้นอลูมิเนียม ,พื้นไม้ ,พื้นยาง) จะสังเกตเห็นว่าค่าสัมประสิทธิ์แรงเสียดทานสถิตย์เพิ่มขึ้นในทุกๆพื้นผิวของทุกความชื้น เนื่องจากการยึดเกาะที่เพิ่มขึ้นระหว่างเมล็ดกับพื้นผิว เมื่อความชื้นเพิ่มขึ้นจาก 10.03% เป็น 22.03% (w.b.) สามารถเขียนสมการความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดกับพื้นผิวอลูมิเนียม พื้นไม้ และพื้นยางได้ดังนี้ สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวอลูมิเนียม Y = 0.0037x + 0.3777 (R² = 0.9004) สัมประสิทธิ์แรงเสียดทานสถิตของพื้นผิวไม้ Y = 0.008x + 0.435 (R² = 0.7349) สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวยาง Y = 0.0188x + 0.3331 (R² = 0.861) รูปที่ 9 Effect of moisture content on coefficient of friction (aluminium, wood, rubber) . (kernel) 4.สรุปผลการทดลอง 1) มวลลูกกระวาน 100 เมล็ด ทั้งเมล็ดจะมีค่าเพิ่มขึ้นจาก 46.45 กรัม ถึง 49.45 กรัม เมล็ดในมีค่าเพิ่มขึ้นจาก 20.94 กรัม ถึง 23.11 กรัม ความเป็นทรงกลม ทั้งเมล็ดมีค่าเพิ่มขึ้นจาก 0.94 ถึง 0.96 เมล็ดในมีค่าเพิ่มขึ้นจาก 0.72 ถึง 0.74 โดยค่าเหล่านี้เพิ่มขึ้นตามความชื้น ทั้งเมล็ด9.27% ถึง 21.27% (wb.) เมล็ดใน 10.03% ถึง 22.03% (wb.) 2) พื้นที่ภาพฉายของลูกกระวาน ทั้งเมล็ดจะมีค่าเพิ่มขึ้นจาก 1.18 (cm²) ถึง 1.29 (cm²) เมล็ดในจะมีค่าเพิ่มขึ้นจาก 0.72 (cm²) ถึง 0.74 (cm²) และเปอร์เซ็นต์ความพรุน ทั้งเมล็ดจะมีค่าลดลงจาก 78.46% ถึง 51.72 % เมล็ดในจะมีค่าลดลงจาก 51.40% ถึง 45.77 % ความหนาแน่นรวมเพิ่มขึ้นเป็นกราฟเส้นตรง ทั้งเมล็ดจาก 0.24 (g/cm³) ถึง 0.27 (g/cm³) เมล็ดในจาก 0.58 (g/cm³) ถึง 0.63 (g/cm³) และความหนาแน่นเนื้อลดลงเป็นกราฟเส้นตรง ทั้งเมล็ดจาก 1.34 (g/cm³) ถึง0.52 (g/cm³) เมล็ดในจาก 1.19 (g/cm³) ถึง 1.15 (g/cm³) 3) ความเร็วลม ทั้งเมล็ดจะมีค่าเพิ่มขึ้น 9.63 (m/s) ถึง 10.21 (m/s) ส่วนเมล็ดในนั้นมีค่าเปลี่ยนตามสมการ polynomial y = -0.004x²+0.122x+8.731 และค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ทั้งเมล็ดเพิ่มขึ้นตามพื้นที่ผิว พื้นอลูมิเนียม (0.30-0.34) พื้นไม้ (0.24-0.29) และพื้นยาง (0.34-0.49) เมล็ดใน เพิ่มขึ้นตามพื้นที่ผิว พื้นอลูมิเนียม (0.41-0.46) พื้นยาง (0.51-0.78) พื้นไม้ (0.51-0.63) 5. อ้างอิง http://www.rspg.or.th/plants_data/herbs/herbs_06_1.htm http://www.foodietaste.com/FoodPedia_detail.asp?id=14 http://www.changsiam.com/spice/cardamon.html http://www.reddiamondherb.com/th/news.php?art=07 http://sellspices.blogspot.com/2012/05/bay-leaf.html http://www.sarakadee.com/feature/2001/04/klong_bang-luang.htm http://www.oknation.net/blog/print.php?id=126936 http://learningpune.com/?p=9879 http://www.aroiho.com
Clean Room
Clean Room คือ บริเวณที่มีการควบคุมสิ่งแวดล้อม ความเข้มข้นของอนุภาคแขวนลอยในอากาศ และถูกสร้างขึ้นและใช้งานในลักษณะที่ทำให้มีการนำเข้ามา การทำให้เกิด และการกักเก็บอนุภาคทั้งหลาย ไว้ให้น้อยที่สุด และมีการควบคุม ปัจจัยอื่นๆที่เกี่ยวข้อง เช่น อุณหภูมิ ความชื้นและความดัน ตามความจำเป็น มีความชำนาญและประสบการณ์ ในด้านการวางแผน การบริหารและการจัดการ มีทีมวิศวกรที่มีความสามารถในงานด้านออกแบบ พร้อมติดตั้งและมีทีมบริการตรง เกี่ยวกับงานด้านระบบห้องคลีนรูม และอุปกรณ์ CLEANROOM TURNKEY PROJECT) ตามมาตรฐาน FEDERAL STD.109-1144 CLEANROOM CLASS (10 - 100000) และมาตรฐาน ISO.STD. CLEANROOM (CLASS 2 - 9) ในงานอุตสาหกรรม ประเภทต่างๆ เช่น• อุตสาหกรรมอาหารและเครื่องดื่ม FOOD & DRINK INDUSTRIAL• อุตสาหกรรมเภสัชกรรมและการแพทย์ PHARMACEUTICAL & HOSPITAL & LAB, ROOM• อุตสาหกรรมอิเลคทรอนิคส์และคอมพิวเตอร์ PCB & ELECTRONIC & COMPUTER INDUSTRIAL• อุตสาหกรรมบรรจุภัณฑ์ PACKAGING INDUSTRIAL Clean Room หรือ “ ห้องสะอาด ” หมายถึง ห้องที่มีการปิดมิดชิด มีการควบคุมมลสารในอากาศให้น้อยที่สุด เพื่อให้มีความสะอาดเป็นไปตามระดับมาตรฐานความสะอาด และมีการควบคุมสภาวะแวดล้อม เช่น อุณหภูมิ ความชื้น และความแตกต่างของความดันตามที่ต้องการ เว็บไซต์อ้างอิง:http://decogroup.co.th/pedia_th.html
สมัครสมาชิก

สนับสนุนโดย / Supported By

  • บริษ้ท มาเรล ฟู้ดส์ ซิสเท็ม จำกัด จัดจำหน่ายเครื่องจักรและอุปกรณ์การแปรรูปอาหาร เช่น ระบบการชั่งน้ำหนัก, การคัดขนาด, การแบ่ง, การตรวจสอบกระดูก และการประยุกต์ใช้ร่วมกับโปรแกรมคอมพิวเตอร์ พร้อมกับบริการ ออกแบบ ติดตั้ง กรรมวิธีการแปรรูปทั้งกระบวนการ สำหรับ ผลิตภัณฑ์ ปลา เนื้อ และ สัตว์ปีก โดยมีวิศวกรบริการและ สำนักงานตั้งอยู่ที่กรุงเทพ มาเรล เป็นผู้ให้บริการชั้นนำระดับโลกของอุปกรณ์การแปรรูปอาหารที่ทันสมัย​​ครบวงจรทั้งระบบ สำหรับอุตสาหกรรม ปลา กุ้ง เนื้อ และสัตว์ปีก ต่างๆ เครื่องแปรรูปผลิตภัณฑ์สัตว์ปีก Stork และ Townsend จาก Marel อยู่ในกลุ่มเครื่องที่เป็นที่ยอมรับมากที่สุดในอุตสาหกรรม พร้อมกันนี้ สามารถบริการครบวงจรตั้งแต่ต้นสายการผลิตจนเสร็จเป็นสินค้า เพื่ออำนวยความสะดวกให้กับทุกความต้องการของลูกค้า ด้วยสำนักงานและบริษัทสาขามากกว่า 30 ประเทศ และ 100 เครือข่ายตัวแทนและผู้จัดจำหน่ายทั่วโลก ที่พร้อมทำงานเคียงข้างลูกค้าเพื่อขยายขอบเขตผลการแปรรูปอาหาร Marel Food Systems Limited. We are supply weighing, grading, portioning, bone detection and software applications as well as complete turn-key processing solutions for fish, meat and poultry. We have service engineer and office in Bangkok. Marel is the leading global provider of advanced food processing equipment, systems and services to the fish, meat, and poultry industries. Our brands - Marel, Stork Poultry Processing and Townsend Further Processing - are among the most respected in the industry. Together, we offer the convenience of a single source to meet our customers' every need. With offices and subsidiaries in over 30 countries and a global network of 100 agents and distributors, we work side-by-side with our customers to extend the boundaries of food processing performance.
  • We are well known for reliable, easy-to-use coding and marking solutions which have a low total cost of ownership, as well as for our strong customer service ethos. Developing new products and a continuous programme of improving existing coding and marking solutions also remain central to Linx's strategy. Coding and marking machines from Linx Printing Technologies Ltd provide a comprehensive solution for date and batch coding of products and packaging across manufacturing industries via a global network of distributors. In the industrial inkjet printer arena, our reputation is second to none. Our continuous ink jet printers, laser coders, outer case coders and thermal transfer overprinters are used on production lines in many manufacturing sectors, including the food, beverage, pharmaceutical, cosmetics, automotive and electronic industries, where product identification codes, batch numbers, use by dates and barcodes are needed. PTasia, THAILAND With more than 3,700 coding, marking, barcode, label applicator, filling, packing and sealing systems installed in THAILAND market. Our range is includes systems across a wide range of technologies. To select the most appropriate technology to suit our customers. An excellent customer service reputation, together with a reputation for reliability that sets standards in the industry, rounds off the PTAsia offering and provides customers with efficient and economical solutions of the high quality. Satisfyingcustomers inTHAILAND for 10 years Our 1,313 customers benefit from our many years of experience in the field, with our successful business model of continuous improvement. Our technical and service associates specialise in providing individual advice and finding the most efficient and practical solution to every requirment. PTAsia extends its expertise to customers in the food, beverage, chemical, personal care, pharmaceutical, medical device, electronics, aerospace, military, automotive, and other industrial markets.
  • วิสัยทัศน์ของบริษัท คือ การอยู่ในระดับแนวหน้า "ฟอร์ฟร้อนท์" ของเทคโนโลยีประเภทต่างๆ และนำเทคโนโลยีนั้นๆ มาปรับใช้ให้เหมาะสมกับอุตสาหกรรมและกระบวนการผลิตในประเทศไทย เพื่อผลประโยชน์สูงสุดของลูกค้า บริษัท ฟอร์ฟร้อนท์ ฟู้ดเทค จำกัด เชื่อมั่นและยึดมั่นในอุดมการณ์การดำเนินธุรกิจ กล่าวคือ จำหน่าย สินค้าและให้บริการที่มีคุณภาพสูง ซึ่งเหมาะสมกับความต้องการของลูกค้า ด้วยความซื่อสัตย์และความตรงต่อเวลา เพื่อการทำธุรกิจที่ประสบความสำเร็จร่วมกันระยะยาว Our vision is to be in the "forefront" of technology in its field and suitably apply the technology to industries and production in Thailand for customers' utmost benefits. Forefront Foodtech Co., Ltd. strongly believes in and is committed to our own business philosophy which is to supply high quality products and service appropriately to each customer's requirements with honesty and punctuality in order to maintain long term win-win business relationship. Forefront Foodtech Co., Ltd. is the agent company that supplies machinery and system, install and provide after sales service as well as spare parts. Our products are: Heinrich Frey Maschinenbau Gmbh, Germany: manufacturer of vacuum stuffers and machinery for convenient food Kronen GmbH, Germany: manufacturer of machinery for vegetable and fruits from washing to packing Nock Fleischerei Maschinenbau GmbH, Germany: manufacturer of skinning machines, membrane skinning machine, slicers and scale ice makers K + G Wetter GmbH, Germany: manufacturer of grinders and bowl cutters Ness & Co. GmbH, Germany: manufacturer of smoke chambers, both stand alone and continuous units Dorit DFT GmbH, Germany: manufacturer of tumblers and injectors Maschinenfabrik Leonhardt GmbH, Germany: manufacturer of dosing and filling equipment