News and Articles

น้ำสลัดไขมันต่ำ รสต้มยำ

น้ำสลัดไขมันต่ำ รสต้มยำ


หมวดหมู่: ศูนย์ส่งเสริมอุตสาหกรรมภาค 9 กรมส่งเสริมอุตสาหกรรม [โครงการสร้างมูลค่าเพิ่มผลิตภัณฑ์เกษตรแปรรูป]
วันที่: 15 มิถุนายน พ.ศ. 2559

  

บทสรุปผู้บริหาร

                    

 

                     บริษัท มูนเทส จำกัดได้ดำเนินธุรกิจเกี่ยวกับน้ำสลัดและซุปรสชาติต่างอยู่แล้วภายใต้ชื่อแบรนด์ "Moon taste" ทางโรงงานจะผลิตน้ำสลัด หรือซุปแช่แข็งเอาไว้ซึ่งทางบริษัทได้เข้าร่วมกิจกรรมการสร้างมูลค่าเพิ่มให้กับผลิตภัณฑ์อาหารแปรรูป (Value Added) ปี2559 ภายใต้โครงการพัฒนาศักยภาพอุตสาหกรรมเกษตรแปรรูปและอาหาร ศูนย์ส่งเสริมอุตสาหกรรมภาคที่ 9 กรมส่งเสริมอุตสาหกรรม ร่วมกับสถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง มีแนวคิดการพัฒนาผลิตภัณฑ์เพิ่มมูลค่าโดยทางผู้ประกอบต้องการพัฒนาผลิตภัณฑ์น้ำสลัดที่อยู่เดิมจากการวิเคราะห์กลยุทธ์ทางการตลาด เทคนิคการผลิต และบรรจุภัณฑ์ สรุปแนวทาง พัฒนาผลิตภัณฑ์เป็นน้ำสลัดไขมันต่ำ รสต้มยำมีอายุการเก็บมากกว่า 6 เดือนบรรจุในถุงบีบโดยมีกลุ่มเป้าหมาย คือ ผู้ที่สนใจด้านสุขภาพกลุ่มผู้บริโภคกำลังซื้อระดับกลางถึงระดับสูง                        

                 

                  ผลิตภัณฑ์ที่พัฒนาจัดอยู่ในกลุ่มอาหารที่ปรับสภาพกรด(acidified food) มีวัตถุดิบหลัก คือน้ำมันรำข้าว น้ำส้มสายชู นมข้นหวาน น้ำตาล และสารประกอบอื่นๆ ได้แก่ แป้งดัดแปลงชนิดต่างที่นำใช้แทนไข่ไก่ในน้ำสลัด โดยมีปัจจัยควบคุมหลัก (key quality parameters) คือ ค่า pH ณ สมดุล (equilibrium pH) น้อยกว่า 4.10 และค่า Total soluble solid น้อยกว่า 31 องศาบริกซ์ กระบวนการทำให้ปลอดเชื้อโดยให้ความร้อนที่อุณหภูมิ 80 องศาเซลเซียส 15 นาที ผลการประเมินคุณภาพทางประสาทสัมผัส ด้วยวิธี 9 point Hedonic scale โดยใช้ผู้ชิมที่ไม่ได้รับการฝึกฝน (untrained panelist) จำนวน 50 คน เพื่อประเมินด้าน สี กลิ่น รสชาติ เนื้อสัมผัส และความชอบรวม ผลการประเมินมีคะแนนความชอบรวมเฉลี่ย เท่ากับ 7.84±0.82 ซึ่งสูงกว่าเกณฑ์ที่กำหนด

                  ผลิตภัณฑ์ที่พัฒนาหลังเข้าร่วมกิจกรรมยืดอายุการเก็บรักษาได้มากกว่า 6 เดือน ทำให้สามารถขยายตลาดในประเทศ และต่างประเทศได้อย่างกว้างขวาง



ข่าวและบทความที่เกี่ยวข้อง
ถั่วลิสงอบกรอบรสไก่
ถั่วลิสงอบกรอบรสไก่ (Peanut with chicken flavor) ตรา : โก๋แก่ (Koh Kae) น้ำหนักสุทธิ (net weight) 95 กรัม (g.) ส่วนประกอบที่สำคัญโดยประมาณ (Ingredients) ถั่วลิสง (Peanuts) 50%แป้งสาลี (Wheat flour) 15%แป้งข้าวเหนียว (Glutinous rice flour) 12.5%แป้งข้าวโพด (Corn flour) 12%น้ำมันพืช (Vegetable oil) 4%สารปรุงแต่งรสไก่ (Chicken flavor) 3%น้ำตาล (Sugar) 2%เกลือบริโภคเสริมไอโอดีน (Iodized salt) 1.5%ใช้โมโนโซเดียมกลูตาเมต (MSG added) เจือสีสังเคราะห์ (Artificial color) แต่งกลิ่นและรสเลียนธรรมชาติ (Natural flavor added) ผู้ผลิตและจัดจำหน่ายโดย บริษัท โรงงานแม่รวย จำกัด 11/1 ถ.บางขุนเทียน-ชายทะเล แขวงแสมดำ เขตบางขุนเทียน กรุงเทพฯ 10150โทร : (662) 416-0077, 894-1122แฟกต์ : (662) 415-5924, 416-3082Manufactured and Distributed byMae-Ruay Snack Food Factory Co., Ltd.11/1 Bangkuntien-Chaitalay Rd., Samaedum Bangkuntien Bangkok 10150 ThailandTell : (662) 416-0077, 894-1122Fax : (662) 415-5924, 416-3082 วันผลิต (Manufacturing date,MFG) 16 สิงหาคม 2555วันหมดอายุ (Expiration date,EXP) 16เมษายน 2556ระยะเวลาการเก็บรักษา (Shelf life) 8 เดือน (กลุ่ม อาหารแห้ง) คำแนะนำ เก็บแช่ไว้ในตู้เย็น จะเพิ่มรสชาติให้กรอบมันอร่อยยิ่งขึ้น (Keep cool in refrigerator) ราคา 19.50 บาท (Baht)
บทที่ 3 ศึกษาปริมาณเกลือระหว่างกระบวนการแปรรูปผลิตภัณฑ์จากปลาทูน่าในระดับอุตสาหกรรม
บทที่ 3 ศึกษาปริมาณเกลือระหว่างกระบวนการแปรรูปผลิตภัณฑ์จากปลาทูน่าในระดับอุตสาหกรรม จเรวงษ์ผึ่ง วรมน อนันต์ และ วสันต์ อินทร์ตา สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง 3.1 บทนำ 3.2 วิธีดำเนินการ 3.3 ผลและวิจารณ์ผล 3.4 สรุปผลการทดลอง 3.1 บทนำ การวิจัยนี้เป็นการศึกษาการเปลี่ยนแปลงของปริมาณเกลือในเนื้อปลาระหว่างกระบวนการแปรรูปผลิตภัณฑ์จากปลาทูน่า โดยได้ศึกษาสภาวะการผลิตจริง ในระดับอุตสาหกรรมที่บริษัทพัทยาฟู้ดอินดัสตรี จำกัด ซึ่งเป็นผู้ผลิต ผลิตภัณฑ์แปรรูปต่างๆจากเนื้อปลาทูน่าหลายชนิด อาทิเช่น กลุ่มผลิตภัณฑ์ที่เหมาะสำหรับเป็นอาหารมื้อหลัก เช่น ทูน่าในน้ำมันพืช ทูน่าในน้ำเกลือ กลุ่มผลิตภัณฑ์พร้อมรับประทานได้ทันที เช่น แกงเขียวหวานทูน่า ทูน่าผัดฉ่า และยังผลิตเป็นผลิตภัณฑ์เพื่อสุขภาพ มีคุณสมบัติเด่นในด้านไขมันต่ำและเกลือต่ำ เช่น ทูน่าสเต็กในน้ำแร่ ซึ่งเป็นที่นิยมของผู้บริโภคที่รักสุขภาพที่กำลังมีสัดส่วนการตลาดที่สูงเพิ่มขึ้น รูปที่3.1 ผลิตภัณฑ์ปลาทูน่าเพื่อสุขภาพ จากการสำรวจปริมาณเกลือในปลาทูน่าแช่แข็ง 3 สายพันธุ์ ซึ่งใช้เป็นวัตถุดิบหลักคือ ปลาทูน่าพันธุ์ครีบเหลือง (yellowfin tuna) ปลาทูน่าพันธุ์ครีบน้ำเงิน (bluefin tuna) และปลาทูน่าพันธุ์ท้องแถบ (skipjack tuna) พบว่าปลาทูน่าพันธุ์ท้องแถบแช่เยือกแข็ง มีปริมาณเกลือเริ่มต้น สูงเกินกว่าที่โรงงานกำหนดคือ พบปริมาณเกลือในเนื้อปลาเฉลี่ยเกินกว่าร้อยละ 1.2 ซึ่งเป็นระดับที่ทางโรงงานต้องการลดปริมาณลง เพื่อใช้เป็นวัตถุดิบสำหรับผลิตภัณฑ์ปลาทูน่าที่มีปริมาณเกลือต่ำ เพื่อประโยขน์ต่อสุขภาพของผู้บริโภค ปริมาณเกลือในปลาทูน่าแช่เยือกแข็ง มาจากการแช่เยือกแข็งซึ่งใช้วิธีการจุ่ม (immersion freezing) โดยการจุ่มและแช่ปลาทูน่าทั้งตัว ในน้ำเกลือเข้มข้นเย็นจัด ซึ่งจะกระทำบนเรือทันทีหลังจากที่จับปลาได้ เพื่อรักษาคุณภาพ และความสดของเนื้อปลาปริมาณเกลือเข้มข้นสูงทำให้ให้น้ำเกลือมีสถานะเป็นของเหลว ที่อุณหภูมิ -18 องศาเซลเซียสและจะแช่ปลาอยู่ในน้ำเกลือระยะหนึ่งจนอุณหภูมิภายในตัวปลาต่ำกว่า -18 องศาเซลเซียสระหว่างการแช่เยือกแข็งเกลือในน้ำเกลือเกิดการออสโมซีส เข้าไปในตัวปลา ทำให้เนื้อปลามีปริมาณเกลือเพิ่มสูงขึ้น ปริมาณเกลือในเนื้อปลาแช่แข็ง แตกต่างกันขึ้นกับ ระยะเวลาการแช่ในน้ำเกลือ ขนาดของปลา และ ตำแหน่งของเนื้อในตัวปลาโดยปกติการรับซื้อปลาทูน่าแช่แข็ง ผู้ประกอบจะสุ่มตรวจวิเคราะห์ปริมาณเกลือในปลาจากท่าเรือ ก่อนการรับหรือปฏิเสธวัตถุดิบ ปริมาณเกลือในปลาทูน่ามีการเปลี่ยนแปลงในระหว่างขั้นตอนการเตรียมวัตถุดิบเพื่อการผลิตผลิตภัณฑ์แปรรูป จากการสำรวจกระบวนการผลิตปลาทูน่ากระป๋องของโรงงาน กระบวนการผลิตเริ่มจากนำปลาทูน่าแช่แข็งที่ผ่านการคัดขนาดตามน้ำหนัก ปลาขนาดเล็ก มีน้ำหนักต่ำกว่า 1.4 กิโลกรัมขนาดกลาง ระหว่าง1.4 - 1.8 กิโลกรัมและ 1.8 - 2.5 กิโลกรัม และขนาดใหญ่มีขนาดมากกว่า 2.5 กิโลกรัม ปลาแต่ละขนาดจะถูกละลายแยกกันในถังละลายแบบน้ำไหลวนตลอดโดยการพ่นน้ำจากก้นถัง ใช้เวลาละลายจนกว่าอุณหภูมิเนื้อที่ติดกระดูก (back bone temperature) อยู่ระหว่าง -2 ถึง 2 องศาเซลเซียส ซึ่งเวลาที่ใช้ขึ้นอยู่กับขนาดของปลาเป็นหลัก แล้วนำไปควักไส้ออก ล้างน้ำให้สะอาด และสะเด็ดออกจากตัวปลา นำปลาไปที่สะอาดแล้ววางเรียงบนชั้นตะแกรงมีล้อเข็น เพื่อนึ่ง (steaming) ในหม้อนึ่งที่อุณหภูมิไอน้ำ 100 องศาเซลเซียส จนกระทั่งอุณหภูมิเนื้อที่ติดกระดูกอยู่ที่ 70 ถึง 90 องศาเซลเซียส เพื่อให้เนื้อปลาสุก โปรตีนในเนื้อปลาเกิดการสูญเสียสภาพธรรมชาติ (protein denaturation) เกาะตัวกันเป็นก้อน จากนั้นจึงทำให้ปลาเย็นลง โดยการสเปรย์น้ำในห้องเย็นที่อุณหภูมิ 18 ถึง 20 องศาเซลเซียส เป็นเวลาประมาณ 3 ชั่วโมง เพื่อให้อุณหภูมิในตัวปลาลดลงเหลือ 35 องศาเซลเซียส และเป็นการเพิ่มน้ำหนักตัวปลาหลังนึ่ง ขั้นตอนต่อไปเป็นการทำความสะอาด ตัดแต่งและแยกเนื้อหลังการนึ่ง โดยนำปลาไปหักหัว ลอกหนัง แยกก้างและขูดเนื้อแดง ก่อนนำเฉพาะส่วนที่เป็นเนื้อขาวไปบรรจุกระป๋อง เติมส่วนผสมที่เป็นของเหลว ปิดฝากระป๋อง และฆ่าเชื้อในหม้อฆ่าเชื้อ (retort) ต่อไป ซึ่งแต่ละขั้นตอนการผลิตล้วนมีผลต่อปริมาณเกลือเนื่องจากมีการใช้น้ำชะละลาย การเปลี่ยนแปลงสภาพเนื้อปลาด้วยความร้อน แต่ผลดังกล่าวไม่มีการศึกษามาก่อน การศึกษาการเปลี่ยนแปลงของปริมาณเกลือในเนื้อปลาระหว่างการผลิตปลาทูน่ากระป๋อง มีวัตถุประสงค์เพื่อเพื่อศึกษาผลของ ขนาดปลา ต่อปริมาณเกลือในเนื้อปลาทูน่าแช่เยือกแข็ง รวมถึงการเปลี่ยนแปลงปริมาณเกลือหลังการละลาย และหลังจากการนึ่งโดยขอบเขตการศึกษา ในปลาทูน่าพันธุ์ท้องแถบ 3 ขนาด คือ ปลาทูน่าที่มีน้ำหนัก ต่ำกว่า 1.4 กิโลกรัม น้ำหนักระหว่าง 1.4-1.8 กิโลกรัม และขนาดน้ำหนักระหว่าง 1.8-2.5 กิโลกรัม ซึ่งข้อมูลดังกล่าวมีความสำคัญและจำเป็นอย่างยิ่ง สำหรับการศึกษาแนวทางการลดปริมาณเกลือในเนื้อปลาทูน่าต่อไป 3.2 วิธีดำเนินการ 3.2.1 ตัวอย่างปลา ตัวอย่างปลาทูน่าแช่เยือกแข็งพันธุ์ท้องแถบ สุ่มตัวอย่างจากสภาวะการผลิตจริง ระดับอุตสาหกรรม ที่บริษัท พัทยาฟู้ดอินดัสตรี จำกัด ตั้งอยู่ที่ ถนนเศรษฐกิจ ตำบลท่าทราย อำเภอเมือง จังหวัดสมุทรสาคร ปลาทูน่าแช่เยือกแข็ง มีอุณหภูมิกึ่งกลางตัวปลาต่ำกว่าหรือเท่ากับ -18 องศาเซลเซียส จัดเก็บในห้องแช่แข็งที่อุณหภูมิห้องเท่ากับ -20 องศาเซลเซียส สุ่มเก็บตัวอย่างปลาแช่เยือกแข็งที่เข้าสู่กระบวนการผลิต กลุ่มตัวอย่างละ 10 ตัว ติดสัญลักษณ์เพื่อระบุตัวปลา โดยสุ่มตัวอย่างปลาทูน่าแช่เยือกแข็ง 3 ช่วงน้ำหนัก คือ น้ำหนักต่ำกว่า 1.4 กิโลกรัม จำนวน 1 กลุ่มตัวอย่าง น้ำหนักระหว่าง 1.4-1.8 กิโลกรัม จำนวน 2 กลุ่มตัวอย่าง น้ำหนักระหว่าง 1.8-2.5 กิโลกรัม จำนวน 1 กลุ่มตัวอย่าง 3.2.2 การละลาย และการนึ่ง ละลายปลาทูน่าเยือกแข็งในชุดทดลองละลายปลาของโรงงาน ซึ่งเป็นถังละลายขนาดความจุของน้ำ 200 ลิตร ใช้จำนวนปลาต่อถังละลาย 40 ตัว โดยปล่อยน้ำให้ไหลล้นออกตลอดเวลา น้ำล้นออกจากถังละลายและไม่วนน้ำที่ใช้ละลายแล้วกลับมาใช้อีก การละลายจะใช้การควบคุมอุณหภูมิเนื้อที่ติดกระดูกในตัวปลาหลังการละลายอยู่ระหว่าง -2 ถึง 2 องศาเซลเซียส โดยใช้เทอร์โมมิเตอร์แบบดิจิตอล วัดเนื้อที่ติดกระดูก หลังจากละลาย เก็บตัวอย่างเนื้อปลาทูน่า จากนั้นนำไปนึ่งโดยวางตัวอย่างปลาแบบสุ่ม บนชั้นตะแกรงมีล้อ วางปลาให้ด้านที่ถูกตัดตัวอย่างก่อนการละลายคว่ำลง เพื่อป้องกันน้ำที่ออกจากปลาที่วางด้านบนชั้นวางไหลลงมาถูกเนื้อบริเวณที่ตัดเป็นตัวอย่าง เข็นตะแกรงที่วางปลาเป็นชั้นเข้าหม้อนึ่งแบบใช้ไอน้ำ หลังจากนึ่งเสร็จเก็บตัวอย่างเก็บตัวอย่างปลาทันที เพื่อนำตัวอย่างปลาเนื้อปลาไปตรวจวิเคราะห์ปริมาณเกลือ รูปที่ 3.2การละลายปลาทูน่าในถังละลาย รูปที่ 3.3 การนึ่งปลาทูน่า 3.2.3 การเก็บตัวอย่างเนื้อปลา การเก็บตัวอย่างเนื้อปลาทูน่าแช่แข็งเก็บตัวอย่างโดยการตัดชิ้นเนื้อปลาขนาด 4 x 5 cm2 ดังรูปที่ 3.4โดยเก็บตัวอย่างก่อนการละลายบริเวณหลังถึงกลางตัวปลาให้ลึกถึงกระดูกปลา เลาะเอาเลือดและหนังออกนำไปตรวจวิเคราะห์ปริมาณเกลือทันที หลังการละลายตัดตัวอย่างเหมือนก่อนละลาย บริเวณหลังอีกแถบหนึ่งที่ไม่ตรงกับบริเวณเดิม นำไปตรวจวิเคราะห์ปริมาณเกลือทันที และหลังนึ่งก็ตัดตัวอย่างปลาเหมือนก่อนละลายโดย เลือกบริเวณที่ไม่ติดตำแหน่งที่เคยตัดไป แล้วนำไปตรวจวิเคราะห์ปริมาณเกลือทันที รูปที่ 3.4 การตัดเพื่อเก็บตัวอย่างเนื้อตัวอย่างปลาทูน่าก่อนและหลังละลาย 3.2.4 การวิเคราะห์ปริมาณเกลือในเนื้อปลา นำตัวอย่างเนื้อปลาที่เก็บในขั้นตอนก่อนการละลาย หลังการละลาย และหลังการนึ่ง บดละเอียดโดยเครื่องปั่นละเอียด แล้วนำมาชั่งน้ำหนักตัวอย่างละ 1-2 กรัม ด้วยเครื่องชั่งสองตำแหน่ง บันทึกน้ำหนัก เติมน้ำกลั่นลงในตัวอย่างปริมาณ 50 มิลลิลิตร คนให้ตัวอย่างเข้ากัน โดยหลังจากเติมน้ำกลั่นแล้วให้วิเคราะห์ตัวอย่างภายใน 5 นาที ตรวจวิเคราะห์ปริมาณเกลือโดยการไตเตรทด้วยซิลเวอร์ไรเตรท (AgNo3) เพื่อให้ทำปฏิกิริยากับ Cl-ตกตะกอน เป็น ซิลเวอร์กับคลอไรด์ (AgCl) ดังสมการ การไตเตทใช้ เครื่องไตเตรทอัตโนมัติ (Mettle Toledo Auto-titrate, รุ่น DL50 สหรัฐอเมริกา) ดังรูปที่ 3.5 เครื่องจะทำการหยดสารซิลเวอร์ไนเตรทลงในตัวอย่างโดยอัตโนมัติ จากนั้นเครื่องทำการหาจุดยุติจากกราฟ (ซิลเวอร์อิออนทำปฎิกิริยาพอดีกับคลอไรค์อิออน) และนำปริมาณซิลเวอร์ไนเตรทที่ใช้มาคำนวณหาร้อยละของเกลือต่อน้ำหนักตัวอย่างเนื้อปลาทูน่า แสดงผลเป็นค่าร้อยละขึ้นที่หน้าจอ รูปที่ 3.5 เครื่องวิเคราะห์ปริมาณเกลือ (Mettler Toledo Auto-titrator) 3.3 ผลและวิจารณ์ผล ผลการวิเคราะห์ปริมาณเกลือ จากปลาทูน่าแช่แข็ง 3 ช่วงน้ำหนัก คือ น้ำหนักต่ำกว่า 1.4 กิโลกรัม จำนวน 1 กลุ่มตัวอย่าง น้ำหนักระหว่าง 1.4-1.8 กิโลกรัม จำนวน 2 กลุ่มตัวอย่าง และน้ำหนักระหว่าง 1.8-2.5 กิโลกรัม จำนวน 1 กลุ่มตัวอย่าง กลุ่มตัวอย่างละ 10 ตัว ได้ผลดังนี้ ตารางที่ 1 การเปลี่ยนแปลงปริมาณเกลือของปลาขนาดต่างๆ หมายเหตุ : เปรียบเทียบความแตกต่างของค่าเฉลี่ยของข้อมูลในแนวตั้ง จากการวิเคราะห์ปริมาณเกลือก่อนการละลายปลาทูน่า 3 ขนาด คือ ขนาดเล็ก (น้อยกว่า 1.4 กิโลกรัม) ขนาดกลาง (1.4-1.8 กิโลกรัม) และขนาดใหญ่ (1.8-2.5 กิโลกรัม) พบว่า ปลาขนาดกลางมีปริมาณเกลือมากที่สุด และมากกว่าในขนาดใหญ่อย่างมีนัยสำคัญทางสถิติ (ที่ระดับ 0.05) ขณะที่ปริมาณเกลือในปลาขนาดเล็ก ไม่แตกต่งกับขนาดกลางและขนาดใหญ่ เนื่องจากปลาขนาดใหญ่ มีพื่นที่ผิวต่อปริมาตรน้อยกว่าทำให้เกิด การออสโมซีส ของเกลือเข้าไปในตัวปลาระหว่างการแช่เยือกแข็งน้อยกว่าปลาขนาดกลางและขนาดเล็ก รูปที่ 3.6 แผนภูมิแสดงการเปลี่ยนแปลงปริมาณเกลือ (%) ก่อนการละลาย หลังการละลายและหลังการละลายต่อขนาดปลา จากการวิเคราะห์ปริมาณเกลือก่อนการละลายปลาทูน่า 3 ขนาด คือ ขนาดเล็ก (น้อยกว่า 1.4 กิโลกรัม) ขนาดกลาง (1.4-1.8 กิโลกรัม) และขนาดใหญ่ (1.8-2.5 กิโลกรัม) พบว่า ปลาขนาดกลางมีปริมาณเกลือมากที่สุด และมากกว่าในขนาดใหญ่อย่างมีนัยสำคัญทางสถิติ (ที่ระดับ 0.05) ขณะที่ปริมาณเกลือในปลาขนาดเล็ก ไม่แตกต่งกับขนาดกลางและขนาดใหญ่ เนื่องจากปลาขนาดใหญ่ มีพื่นที่ผิวต่อปริมาตรน้อยกว่าทำให้เกิดการออสโมซีสของเกลือเข้าไปในตัวปลาระหว่างการแช่เยือกแข็งน้อยกว่าปลาขนาดกลางและขนาดเล็ก ตารางที่ 2 การเปลี่ยนแปลงปริมาณเกลือ รูปที่ 3.7 แผนภูมิแสดงการเปลี่ยนแปลงปริมาณเกลือ (%) ก่อนการละลาย หลังการละลายและหลังการนึ่ง ผลการศึกษาปริมาณเกลือเฉลี่ยของปลาทูน่า 3 ขนาด ที่เปลี่ยนแปลงหลังการละลาย (after thawing) และหลังการนึ่ง (after steaming) พบว่า ปลาหลังการละลายมีปริมาณเกลือลดต่ำลงจากปลาแช่แข็งอย่างมีนัยสำคัญทางสถิติ (ที่ระดับ 0.05) โดยคาดว่าการละลายด้วยน้ำ น้ำเป็นตัวทำละลายที่ดีเนื่องจากคุณสมบัติความมีขั้วในโมเลกุลของน้ำโดยเกลือ (NaCl) เป็นสารประกอบไอออนิกที่ละลายน้ำได้ และเกิดกระบวนการแพร่โดยเกลือในตัวปลาที่มีความเข้มข้นสูงกว่าไปยังน้ำที่ใช้ในการละลายซึ่งมีความเข้มข้นต่ำกว่าแต่หลังจากที่นำปลาละลายแล้วไปนึ่งให้สุกพบว่าปริมาณเกลือในเนื้อปลาเปลี่ยนแปลงเล็กน้อย และไม่แตกต่างอย่างมีนัยสำคัญทางสถิติกับตัวอย่างก่อนการนึ่ง เนื่องจากในกระบวนการแพร่ของเกลือต้องอาศัยตัวกลางในการแพร่ ซึ่งในกระบวนการนึ่งไม่มีตัวกลาง แสดงว่าขั้นตอนการละลายปลาด้วยน้ำ เป็นขั้นตอนหลักที่มีผลต่อการลดปริมาณเกลือในปลาทูน่าระหว่างการแปรรูป ซึ่งจะใช้เป็นแนวทางในการศึกษาต่อถึงวิธีการละลายปลาด้วยน้ำที่มีประสิทธิภาพสูงสุดต่อการลดปริมาณเกลือในปลาทูน่า 3.4 สรุปผลการทดลอง จากการศึกษากระบวนการผลิตพบว่า การนำเกลือออกจากเนื้อปลาทูน่าต้องอาศัยตัวกลางในการพาเกลือออกจากเนื้อปลา ซึ่งการละลายโดยใช้น้ำเป็นตัวกลางเป็นขั้นตอนที่มีความเป็นไปได้มากที่สุดที่สามารถลดปริมาณเกลือในเนื้อปลาทูน่าได้ โดยเลือกศึกษาปลาทูน่าพันธุ์ท้องแถบเนื่องจากปลาสายพันธุ์นี้ตรวจพบปริมาณเกลือในตัวอย่างมากเกินกว่ากำหนด นั่นคือ1.2% ขนาดกลางน้ำหนักระหว่าง 1.4 - 1.8 กิโลกรัม มีปริมาณเกลือมากที่สุดเมื่อเปรียบเทียบกับขนาดเล็กและขนาดใหญ่ โดยเลือกศึกษาเฉพาะในช่วงระหว่างก่อนการละลายและหลังการละลาย เนื่องจากปริมาณเกลือหลังการละลายลดลงจากช่วงก่อนการละลายมากกว่าช่วงหลังการละลายจนถึงหลังการนึ่ง และจากการทดลองดังกล่าวทำให้ทราบถึงข้อมูลพื้นฐานของปริมาณเกลือในปลาทูน่า เพื่อนำมาวิเคราะห์และวางแผนการทดลอง โดยเลือกใช้ตัวอย่างจากผลการทดลองในโรงงานและได้ศึกษาวิธีการเก็บตัวอย่าง การวิเคราะห์ปริมาณเกลือ เพื่อเป็นแนวทางการปฏิบัติในการทดลองต่อไป
3.3 ผลและวิจารณ์ผล
3.3 ผลและวิจารณ์ผล ผลการวิเคราะห์ปริมาณเกลือ จากปลาทูน่าแช่แข็ง 3 ช่วงน้ำหนัก คือ น้ำหนักต่ำกว่า 1.4 กิโลกรัม จำนวน 1 กลุ่มตัวอย่าง น้ำหนักระหว่าง 1.4-1.8 กิโลกรัม จำนวน 2 กลุ่มตัวอย่าง และน้ำหนักระหว่าง 1.8-2.5 กิโลกรัม จำนวน 1 กลุ่มตัวอย่าง กลุ่มตัวอย่างละ 10 ตัว ได้ผลดังนี้ ตารางที่ 1 การเปลี่ยนแปลงปริมาณเกลือของปลาขนาดต่างๆ จากการวิเคราะห์ปริมาณเกลือก่อนการละลายปลาทูน่า 3 ขนาด คือ ขนาดเล็ก (น้อยกว่า 1.4 กิโลกรัม) ขนาดกลาง (1.4-1.8 กิโลกรัม) และขนาดใหญ่ (1.8-2.5 กิโลกรัม) พบว่า ปลาขนาดกลางมีปริมาณเกลือมากที่สุด โดยที่ปริมาณเกลือของขนาดกลางและขนาดใหญ่ แตกต่างกันอย่างมีนัยสำคัญทางสถิติที่ระดับ 0.05 แต่ขนาดกลางและขนาดเล็ก ขนาดใหญ่และขนาดเล็ก แตกต่างกันอย่างไม่มีนัยสำคัญทางสถิติที่ระดับ 0.05 เนื่องจากปลาขนาดใหญ่ มีการแพร่ของเกลือน้อยกว่าขนาดกลางและขนาดเล็ก ปลาขนาดใหญ่มีพื่นที่ผิวต่อปริมาตรน้อย การแพร่ของเกลือผ่านทางผิวเข้าไปในเนื้อซึ่งเป็นปริมาตรได้น้อยกว่า ปลาขนาดเล็กกว่าซึ่งมีพื่นที่ผิวต่อปริมาตรมาก การแพร่ของเกลือเข้าไปในเนื้อปลาได้มากกว่า รูปที่ 3.6 แผนภูมิแสดงการเปลี่ยนแปลงปริมาณเกลือ (%) ก่อนการละลาย หลังการละลายและหลังการละลายต่อขนาดปลา จากการวิเคราะห์ปริมาณเกลือหลังการละลายและหลังการนึ่งปลาทูน่า พบว่า ปลาขนาดกลางมีปริมาณเกลือมากที่สุด โดยที่ปริมาณเกลือของขนาดกลางแตกต่างจากขนาดเล็กและขนาดใหญ่อย่างมีนัยสำคัญทางสถิติที่ระดับ 0.05 แต่ปริมาณเกลือของขนาดเล็กและขนาดใหญ่ไม่แตกต่างกัน และตัวอย่างปลาทูน่าขนาดใหญ่และขนาดกลาง ปริมาณเกลือในเนื้อปลาลดลงมากที่สุดหลังการละลาย ลดลงเล็กน้อยกลังกระบวนการนึ่ง ส่วนตัวอย่างขนาดเล็ก ปริมาณเกลือในเนื้อลดลงมากที่สุดหลังการละลาย แต่หลังการนึ่งมีปริมาณเกลือเพิ่มมากขึ้น เนื่องจากเกิดความแปรปรวนในตัวอย่าง ซึ่งในแต่ละจุดของปลาทูน่ามีปริมาณเกลือไม่เท่ากัน ตารางที่ 2 การเปลี่ยนแปลงปริมาณเกลือ รูปที่ 3.7 แผนภูมิแสดงการเปลี่ยนแปลงปริมาณเกลือ (%) ก่อนการละลาย หลังการละลายและหลังการนึ่ง จากการทดลองละลายปลาทูน่า 3 ขนาดต่างกัน คือ ขนาดเล็ก ขนาดกลาง และขนาดใหญ่ จะได้ข้อมูลของปริมาณเกลือก่อนการละลาย (Frozen fish) หลังการละลาย (After thawing) และหลังการนึ่ง (After steaming) โดยที่ก่อนการละลายมีปริมาณเกลือเฉลี่ยมากที่สุด แตกต่างจากหลังการละลายและหลังการนึ่งอย่างมีนัยสำคัญทางสถิติที่ระดับ 0.05 แต่หลังการละลายและหลังการนึ่งไม่แตกต่างกัน โดยหลังการละลายมีปริมาณเกลือลดลงจากก่อนการละลายมากกว่าช่วงหลังการละลายจนถึงหลังการนึ่ง ดังนั้น ช่วงก่อนการละลายและหลังการละลายจึงเป็นช่วงที่เลือกศึกษาการลดปริมาณเกลือ 3.4 สรุปผลการทดลอง จากการศึกษากระบวนการผลิตพบว่า การนำเกลือออกจากเนื้อปลาทูน่าต้องอาศัยตัวกลางในการพาเกลือออกจากเนื้อปลา ซึ่งการละลายโดยใช้น้ำเป็นตัวกลางเป็นขั้นตอนที่มีความเป็นไปได้มากที่สุดที่สามารถลดปริมาณเกลือในเนื้อปลาทูน่าได้ โดยเลือกศึกษาปลาทูน่าพันธุ์ท้องแถบเนื่องจากปลาสายพันธุ์นี้ตรวจพบปริมาณเกลือในตัวอย่างมากเกินกว่ากำหนด นั่นคือ1.2% ขนาดกลางน้ำหนักระหว่าง 1.4 - 1.8 กิโลกรัม มีปริมาณเกลือมากที่สุดเมื่อเปรียบเทียบกับขนาดเล็กและขนาดใหญ่ โดยเลือกศึกษาเฉพาะในช่วงระหว่างก่อนการละลายและหลังการละลาย เนื่องจากปริมาณเกลือหลังการละลายลดลงจากช่วงก่อนการละลายมากกว่าช่วงหลังการละลายจนถึงหลังการนึ่ง และจากการทดลองดังกล่าวทำให้ทราบถึงข้อมูลพื้นฐานของปริมาณเกลือในปลาทูน่า เพื่อนำมาวิเคราะห์และวางแผนการทดลอง โดยเลือกใช้ตัวอย่างจากผลการทดลองในโรงงานและได้ศึกษาวิธีการเก็บตัวอย่าง การวิเคราะห์ปริมาณเกลือ เพื่อเป็นแนวทางการปฏิบัติในการทดลองต่อไป
ตัวอย่างข้อสอบการขึ้นทะเบียนนักวิทยาศาสตร์ด้านอาหาร
ตัวอย่างข้อสอบขึ้นทะเบียนนักวิทยาศาสตร์ด้านอาหาร สำหรับอุตสาหกรรมอาหาร ดู ตัวอย่างคำถาม 1. เคมีอาหาร 2. จุลชีววิทยาอาหาร 3. การประกันคุณภาพและสุขาภิบาลอาหาร 4. การแปรรูปอาหารและวิศวกรรมอาหาร (ที่มา http://www.fostat.org/index.php?option=com_content&view=article&id=107:-certified-food-professional-cfop&catid=56:cfop-info&Itemid=99) หมายเหตุ อาจมีการปรับเปลี่ยนเล็กน้อยเพื่อการเชื่อมโยงคำศัทพ์ใน www.foodnetworksolution.com หมวดเคมีอาหาร 1. ข้อ ใด ไม่ใช่ วิธีการตรวจสอบการเกิดลิพิดออกซิเดชัน (lipid oxidation) ในอาหาร (1) การหาค่า Peroxide Value (2) การหาค่า TBARS (3) การหาปริมาณ Hexanal (4) การหาค่า Anisidine 2. ทั้งไข่ขาวและไข่แดงต่างมีโปรตีนเป็นองค์ประกอบสำคัญ แต่โปรตีนเหล่านั้น มีสมบัติเชิงหน้าที่ (functional properties of protein) ในอาหารต่างกัน คือ (1) โปรตีนในไข่ขาวมีหน้าที่ให้เกิดฟอง ขณะทีโปรตีนในไข่แดงให้สมบัติการเกิดอิมัลชัน (2) โปรตีนในไข่ขาวมีหน้าที่ให้เกิดอิมัลชัน ขณะทีโปรตีนในไข่แดงให้สมบัติการเกิดฟอง (3) โปรตีนในไข่ขาวและไข่แดงมีสมบัติเชิงหน้าที่ในอาหารไม่แตกต่างกัน (4) โปรตีนในไข่ขาวมีหน้าที่ให้เกิดฟอง ขณะทีโปรตีนในไข่แดงให้สมบัติการเกิดทั้งฟองและอิมัลชัน 3. จากสารละลายน้ำตาลเข้มข้น 1 mg/ml ถ้า ต้องการเจือจางให้มีความเข้มข้น 20 μg/ml ใน ปริมาตร 100 ml จะต้องใชสารละลายน้ำตาลเข้นข้น 1 mg/ml (1) ปริมาตร 2 ml แล้ว เติมน้ำให้เป็น 100 ml (2) ปริมาตร 3 ml แล้ว เติมน้ำให้เป็น 100 ml (3) ปริมาตร 4 ml แล้ว เติมน้ำให้เป็น 100 ml (4) ปริมาตร 5 ml แล้ว เติมน้ำให้เป็น 100 ml 4. สารใดต่อไปนี้มี สมบัติเป็น stabilizer (1) Xylitol (2) Lecithin (3) Pectin (4) Tristearin 5. น้ำตาลที่จัดว่าเป็น non reducing sugar คือ (1) มอลโทส (maltose) (2) ซูโครส (sucrose) (3) กลูโคส (glucose) (4) ฟรักโทส (fructose) 6. ข้อใดถูกต้องเกี่ยวกับปฏิกิริยาเมลลาร์ด (maillard reaction) (1) ปฏิกิริยาระหว่างน้ำตาลรีดิวซ์ กับกรดอะมิโน (2) ปฏิกิริยาระหว่างเอนไซม์ PPO กับสารประกอบโมโนฟีนอล (3) ปฏิกิริยาการให้ความร้อนแก่น้ำตาล (4) ปฏิกิริยาย่อยน้ำตาลโดยเอนไซม์ 7. เมื่อให้ความร้อนสูงๆ แก่สารอาหารพวกโปรตีน เพปไทด์ หรือกรดอะมิโนจะก่อใหเ้กิดสารเป็นพิษชนิดใด (1) Polycyclic aromatic hydrocarbon (2) Carbonyl compound (3) Heterocyclic amine (4) Hydroperoxide 8. สารกันเสีย (preservative) ในข้อใดที่สามารถใช้ได้ดีในอาหารทีมีฤทธิ์เป็นกรด (1) กรดซอร์บิก (sorbic acid) (2) เกลือเบนโซเอต (benzoate) (3) โซเดียมแอซิเทต (4) โพแทสเซียมไบซัลไฟต์ 9. นำตัวอย่างอาหาร 25 กรัม มาอบแห้ง และเผาให้เ้ป็นเถ้า จะได้น้ำหนักตัวอย่างแห้ง หลังการอบเท่ากับ 5 กรัม และได้ปริมาณเถ้า 1 กรัม เมื่อหาร้อยละ (%) โดยน้ำหนักแห้ง ของปริมาณ เถ้า ที่วิเคราะห์ได้จะเท่ากับ (1) 1.33% (2) 4% (3) 20% (4) 80% 10. สารละลาย 40% โซเดียมไฮดรอกไซด์ (น้ำหนักโมเลกุล 40) มีความเข้มข้น เท่ากับ (1) 1 N (2) 4 N (3) 10 N (4) 40 N หมวดจุลชีววิยาอาหาร 1. จุลินทรีย์กลุ่มใดที่เป็นสาเหตุหลักของการเสื่อมคุณภาพของน้ำนมพาสเจอรไรซ์ ในระหว่างการเก็บที่อุณหภูมิตู้เย็น (1) Thermoduric bacteria (2) Mesophilic bacteria (3) Psychrophilic bacteria (4) Psychrotrophic bacteria 2. Coagulase test เป็นวิธีหนึ่ง ในการตรวจวิเคราะห์เพื่อ ยืนยันชนิดของแบคทีเรีย ในข้อใด (1) Salmonella Typhi (2) Vibrio cholerae (3) Shigella sp. (4) Staphylococcus aureus 3. ถ้าข้าวผัดมี Bacillus cereus อยู่ 8 x 107 CFU/g ถ้าต้องการวิเคราะห์เชื้อนี้ควรจะเจือจางอาหารเท่าใด จึงสามารถนับจำนวน Bacillus cereus ได้ 80 colonies บนอาหารเลี้ยงเชื้อ MYP โดยวิธีการ Spread plate (1) 10-3 (2) 10-4 (3) 10-5 (4) 10-6 4. จุลินทรีย์ที่เป็นสาเหตุของการเน่าเสีย (microbial spoilage) ของเนื้อสัตว์สดได้เร็วทีสุดคือ (1) Pseudomonas (2) Campylobacter (3) Clostridium (4) Mycobacterium 5. สารพิษจากเชื้อรา (mycotoxin) ที่เป็นปัญหาในผลิตภัณฑ์เครื่องเทศในประเทศไทยมากทีสุดซึ่งควรได้รับ การเฝ้าระวังอย่างต่อเนื่องคืออะไร? (1) Patulin (2) Fumonisin (3) Ochratoxin (4) Aflatoxin B และ G 6. Post contamination ได้แก่ (1) การพบเชื้อราบนผิวหน้า แยมที่เปิดใช้แล้ว (2) การพบเชื้อแบคทีเรียทีปลายท่อตัน (Dead end) (3) การพบเชื้อยีสต์บนมือพนักงาน (4) การพบเชื้อ จุลินทรีย์บนอาหารเลี้ยงเชื้อ ที่เปิดฝาไว ้ 7. อาหารกระป๋องทีใช้อุณหภูมิในการฆ่าเชื้อต่ำกว่า 121°ซ ได้แก่ (1) สับปะรดกระป๋อง (2) ถั่วลันเตากระป๋อง (3) ขาหมูกระป๋อง (4) ข้าวโพดอ่อนกระป๋อง 8. จุลินทรีย์ชนิดใดเจริญได้ใ้นสภาวะที่มีออกซิเจน เท่านั้น (1) Escherichia coli (2) Penicillium spp. (3) Salmonella (4) Staphylococcus aureus 9. ลูกชิ้นปลาเรืองแสงสีเขียว เกิดจากเชื้อจุลินทรีย์ชนิดใด (1) Aspergillus flavus (2) Escherichia coli (3) Proteus vulgaris (4) Pseudomonas fluorescens 10. ในการวิเคราะห์หายีสต์โดยใช้อาหารเลี้ยงเชื้อ Potato dextrose agar (PDA) ต้องมีการ เติมยาปฏิชีวนะ Chloramphenicol ลงไปในอาหาร PDA เพราะมีวัตถุประสงค์เพื่อ (1) ช่วยให้ยีสต์โตเร็วขี้น (2) ยับยั้งการเจริญของเชื้อแบคทีเรีย (3) ทำให้การฆ่าเชื้ออาหารเลี้ยงเชื้อสมบูรณ์ขึ้น (4) เพื่อเป็นการปรับ pH หมวดประกัน คุณภาพและสุขาภิบาล 1. โรงงานผลิตอาหาร ต้องมีระบบประกันคุณภาพพื้น ฐานประเภทใด (1) HACCP (2) SOP (3) GAP (4) GMP 2. แผนภูมิควบคุมคุณภาพจากการตรวจสอบด้วยคุณลักษณะ (attribute) มีหลายแบบ แผนภูมิ ควบคุมคุณภาพใดต่อไปนี้เป็นแผนภูมิควบคุมคุณภาพด้วย ลักษณะ (attribute) (1) แผนภูมิควบคุมคุณภาพเฉลี่ย ( - chart) (2) แผนภูมิควบคุมคุณภาพ มัธยฐาน (Control chart for median) (3) แผนภูมิควบคุมภาพพิสัย (Control chart for range) (4) แผนภูมิควบคุมคุณภาพสัดส่วนเสีย (p-chart) 3. ถ้า ต้องการวัดความหนืดของน้ำผึ้งควรใช้เครื่องมือใด (1) Bostwick consistometer (2) Brookfield viscometer (3) Adam consistometer (4) Ridgelimeter 4. ผู้ผลิตอาหารต้องมีมาตรการแก้ไข (Corrective action) ตามแผน HACCP ทันที เมื่อ พบว่า (1) เกิดการเบี่ยงเบนจากค่าการปฏิบัติงาน (Operating limit) (2) เกิดการเบี่ยงเบนจากค่าเป้าหมาย (Target value) (3) เกิดการเบี่ยงเบนจากค่าดัชนีวัดการปฏิบัติสำคัญ (Key performance index) (4) เกิดการเบี่ยงเบนจากค่าวิกฤต (Critical limit) 5. วิธีการทำความสะอาดที่เหมาะสมกับระบบท่อหรือเครื่องมือทีไม่สามารถถอดแยกชิ้นส่วนได ้ (1) Steam gun (2) High pressure flushing (3) CIP (4) COP 6. อาหารกระป๋องที่ความเป็นกรดต่ำ (low acid food) ตามกฎหมายอาหาร จัดเป็น (1) อาหารควบคุมเฉพาะ (2) อาหารทีมีความเสี่ยงสูง (3) อาหารที่กำหนดคุณภาพและความปลอดภัย (4) อาหารทีต้องมีเลขทะเบียน อย. 7. หลักการของการควบคุมคุณภาพ คือ (1) เน้นการตรวจสอบผลิตภัณฑ์สุดท้าย (2) เน้นระบบการดำเนินงานให้อาหารมีคุณภาพ (3) เน้นประสิทธิภาพการดำเนินงานในการผลิต สินค้า (4) เน้นการควบคุมให้ผลิตภัณฑ์ตรงตามความต้องการของ ลูกค้า 8. น้ำใช้ในโรงงานที่สัมผัสอาหารต้องมีคุณภาพอย่างไร (1) ปราศจากคลอรีนตกค้าง (2) ปราศจากกลิ่น (3) ปราศจากความกระด้าง (water hardness) (4) ดื่มได ้ 9. ข้อกำหนดของการบรรจุเป็น 150 ± 3 กรัม แต่ผลิตได้จริง 150 ± 2 กรัม ค่า Process capability index เป็น (1) 0.50 (2) 0.67 (3) 1.00 (4) 1.50 10. ระบบควบคุมคุณภาพใดเกี่ยวข้องกับการจัดตั้งห้องปฏิบัติการควบคุมคุณภาพ (1) ISO 14000 (2) ISO 17025 (3) ISO 18000 (4) ISO 9000 11. วัตถุประสงค์หลักของพระราชบัญญัติ พ.ศ. 2522 คือ (1) ความเป็นธรรมทางด้านการค้า (2) ให้อาหารมีความปลอดภัยและมีคุณภาพ (3) คุ้มครองผู้บริโภค และพัฒนาอุตสาหกรรมอาหาร (4) ความเป็นธรรมสำหรับผู้บริโภค และพัฒนาอุตสาหกรรม 12. รสใดต่อไปนี้ จัดเป็นรส (taste) พื้นฐาน (1) รสขม (2) รสเผ็ด (3) รสฝาด (3) รสซ่า 13. กลุ่มแม่บ้านเกษตรกร ได้รับอนุญาตสถานที่ผลิตอาหาร (ทีไม่เข้าข่ายโรงงาน) ต้องการผลิตน้ำลูกยอสเตอริไรส์ (sterilization) จำหน่าย ต้องปฏิบัติอย่างไร (1) ขอขี้นทะเบียนตำรับอาหาร (2) ขออนุญาตใช้ฉลาก (3) ขอแจ้งรายละเอียดผลิตภัณฑ์ (4) ไม่ต้องดำเนินการใดๆ 14. อาหารชนิดใดทีต้องมีฉลากโภชนาการ (1) นมพาสเจอไรส์ (pasteurization) ไขมันเต็ม (2) นม ยู เอชที แคลเซียมสูง (3) นม ยู เอช ที ไขมันเต็ม (4) นมสเตอริไรส์ (sterilization) ไขมันเต็ม 15. การบำบัดน้ำเสียวิธีใดทีเป็นข้อห้ามทางกฎหมาย ก. Activated sludge ข. Oxidation pond ค. Dilution ง. Trickling filter หมวดแปรรูปและวิศวกรรมอาหาร 1. การทำแห้งใบมะกรูดเพื่อรักษาสีและกลิ่นรส ควรใช้วิธีใด (1) tray drier (2) sun drying (3) microwave drying (4) fluidized bed drying 2. อาหารในข้อใดทีไม่ต้องบรรจุในกระป๋องเคลือบแลกเกอร์ (1) เมล็ดข้าวโพด (2) อาหารทะเล (3) เมล็ดถั่วลิสง (4) สับปะรด 3. การเก็บผักผลไม้สดที่อุุณหภูมิต่ำ (cold storage) เกินไปจะเกิดลักษณะผิดปกติ คือ (1) chilling injury (2) freeze burn (3) drip loss (4) staling 4. วิธีการแช่เยือกแข็ง (freezing) ใดที่ให้คุณภาพของผลิตภัณฑ์ดีกว่าวิธีอื่น (1) air blast freezing (2) contact plate freezing (3) cryogenic freezing (4) liquid immersion freezing 5. ข้อความใดต่อไปนี้ถูกต้อง (1) ค่า F0 เป็นค่าเฉพาะสำหรับจุลินทรีย์แต่ละชนิด ซึ่งแสดงความต้านทานความร้อนของจุลินทรีย์ชนิดนั้น (2) Low acid foods หมายถึง อาหารทุกชนิด (ยกเว้น เครื่องดื่ม แอลกอฮอล์) ทีมี pHมากกว่า 4.6 และ Aw มากกว่า 0.85 (3) z value หมายถึง จำนวนองศาที่ใช้ใ้นการลดจำนวนจุลินทรีย์ลง 1 log cycle หรือ 90% (4) การวัดการแผ่กระจายความร้อน (Heat penetration test) ในภาชนะบรรจุ ต้องวาง ตำแหน่ง thermocouple กึ่งกลางกระป๋องเสมอ เนื่องจากเป็นตำแหน่งทีร้อนช้าที่สุดของภาชนะบรรจุ 6. ข้อความใดต่อไปนี้ที่ถูกต้อง (1) อาหารแช่เยือกแข็งควรเก็บรักษาทุกอุณหภูมิ -10°C (2) อาหารที่แช่เยือกแข็ง (freezing) แบบFast Freezing มีคุณภาพต่ำกว่า Slow Freezing (3) การผลิตแยมชนิดน้ำตาลต่ำ (Low sugar) ควรใช้ ้LM pectin (4) การใช้ก๊าซเอทีลีน บ่ม มีจุดประสงค์เพื่อ ให้ส้ม มีรสหวานขึ้น และช่วยลดการเสื่อมเสียจากจุลินทรีย์ (microbial spoilage) 7. ผลิตภัณฑ์มีเชื้อจุลินทรีย์เริ่มต้น 1,000,000,000 หรือ 1x109 เซลล์ เมื่อถูกแปรรูปโดยให้ ความร้อน (thermal processing) 12 D (D value) อยากทราบว่า ผลิตภัณฑ์จะมีปริมาณเชื้อหลงเหลืออยู่กี่เซลล์ (1) 300 เซลล์ (2) 1,000 เซลล์ (3) 1,200 เซลล์ (4) 1/1,000 เซลล์ 8. ต้องการบรรจุผลไม้ที่มีความหวาน (total soluble solid) เท่ากับ 10oBrix หนัก 225 กรัมใน น้ำเชื่อม 225 กรัม อยากทราบว่าจะต้องเตรียมน้ำเชื่อมเข้มข้น เท่าไร จึงจะได ้cut out Brix เท่ากับ 12oBrix (1) 10oBrix (2) 14oBrix (3) 16oBrix (4) 18oBrix 9. ทีอุณหภูมิฆ่าเชื้อเดียวกัน จุลินทรีย์ทีมีค่า Z (Z value) ในอาหารชนิด A และ B เท่ากับ 5 และ 8 (1) อาหารชนิด A ใช้เวลาฆ่าเชื้อมากกว่าอาหารชนิด B (2) อาหารชนิด B ใช้เวลาฆ่าเชื้อมากกว่าอาหารชนิด A (3) อาหารชนิด A ใช้เวลาฆ่าเชื้อเท่ากับอาหารชนิด B (4) ค่า Z ไม่เกี่ยวข้องกับการคำนวณเวลาฆ่าเชื้อ 10. เทอร์โมมิเตอร์ที่หม้อนึ่งฆ่าเชื้อ (retort) ควรเป็นชนิดใด (1) แอลกอฮอล์ในหลอดแก้ว (2) ปรอทในหลอดแก้ว (3) เทอร์โมมิเตอร์ชนิดหน้าปัด (4) เทอร์โมมิเตอร์ชนิดบันทึกข้อมูล 11. ข้อใดคือลักษณะของ aseptic processing (1) บรรจุผลิตภัณฑ์ในบรรจุภัณฑ์แล้ว นำไปฆ่าเชื้อ (2) บรรจุผลิตภัณฑ์ในภาชนะบรรจุปลอดเชื้อ (3) ฆ่าเชื้อผลิตภัณฑ์และบรรจุภัณฑ์ แล้วบรรจุในสภาพปลอดเชื้อ (4) ฆ่าเชื้อผลิตภัณฑ์และบรรจุทันที 12. ข้อใดจัดเป็นส่วนประกอบของเครื่องมือทีใช้เพื่อการทำให้เข้มข้น แบบแช่เยือกแข็ง (freeze concentration) (1) Crystallizer (2) Plate evaporator (3) Reverse osmosis (4) Vacuum evaporator 13. เตาไฟฟ้า ทำจากแผ่นทองแดงทรงสี่เหลี่ยมจัตุรัสขนาด 20 เซนติเมตร หนา 2 เซนติเมตร มีอัตราการให้ความร้อน 50 วัตต์ต่อลูกบาศก์เซนติเมตร หากอุณหภูมิอากาศเท่า กับ 25 องศาเซลเซียส และสัมประสิทธิ์การพาความร้อน (h) เท่ากับ 5 วัตต์ต่อตารางเซนติเมตรต่อ องศาเซลเซียส อุณหภูมิทีผิวแผ่นทองแดงจะเท่ากับเท่าไร (กำหนดให้้ q = hAΔT) (1) 30 องศาเซลเซียส (2) 45 องศาเซลเซียส (3) 50 องศาเซลเซียส (4) 55 องศาเซลเซียส 14. ข้อจำกัดการเพิ่ม ความเข้มข้น ของน้ำผลไม้โดยใช้เครื่องกรองแบบ Reverse osmosis คือข้อใดต่อไปนี้ (1) ความเข้มข้น (2) ความหนืด (3) อุณหภูมิ (4) ความขุ่น การพัฒนา "นักวิทยาศาสตร์ด้านอาหาร" ให้มีองค์ความรู้และตระหนักถึงความปลอดภัยของอาหาร เป็นการสร้างความเชื่อมั่นในด้านมาตรฐานคุณภาพ และความปลอดภัยแก่ผู้บริโภค ซึ่งเป็นสิ่งจำเป็น สำหรับการเสริมสร้างศักยภาพของอุตสาหกรรมอาหารไทย สมาคมวิทยาศาสตร์และ เทคโนโลยีทางอาหารแห่งประเทศไทย (FoSTAT) สมาคมสภาวิชาการอุตสาหกรรมเกษตร (AIAC) และกลุ่มอุตสาหกรรมอาหาร สภาอุตสาหกรรมแห่งประเทศไทย (FTI) และคณะกรรมการธุรกิจเกษตรและอาหาร สภาหอการค้าแห่งประเทศไทย (BoT) จึงดำเนินการ "ขึ้นทะเบียนนักวิทยาศาสตร์ด้านอาหารสำหรับอุตสาหกรรมอาหาร" CERTIFIED FOOD PROFESSIONAL (CFoP) เพื่อเป็นการส่งเสริมการเพิ่มขีดความสามารถของบุคลากรใน ภาคอุตสาหกรรมอาหาร ทำไมต้องสอบขึ้นทะเบียนนักวิทยาศาสตร์ด้านอาหาร เพื่อให้กระบวนการผลิตอาหารได้รับการดูแลอย่างเหมาะสมจากนักวิทยาศาสตร์ด้านอาหาร ที่มีความรู้ที่เกี่ยวกับมาตรฐานคุณภาพ และความปลอดภัยของอาหารเพื่อสร้างความเชื่อมั่นแก่ผู้ที่เกี่ยวข้อง เพื่อพัฒนาอุตสาหกรรมอาหารของประเทศให้มีคุณภาพสูงขึ้นด้วยนักวิทยาศาสตร์ด้านอาหาร ที่มีความรู้ ความเข้าใจมาตราการความปลอดภัยการผลิต เพื่อเพิ่มประสิทธิภาพในการถ่ายทอดข้อมูล ข่าวสารระหว่างองค์กรทางด้านอาหาร กับอุตสาหกรรมอาหาร เพื่อส่งเสริมให้อุตสาหกรรมอาหารได้มีการดำเนินการอย่างถูกต้องตามกฎหมายที่เกี่ยวกับอาหาร ผู้ที่ควรสอบขึ้นทะเบียนนักวิทยาศาสตร์ด้านอาหาร ผู้ที่ปฏิบัติงานในอุตสาหกรรมอาหารด้านการผลิต หรือการประกันคุณภาพ หรือการควบคุมคุณภาพ หรือความปลอดภัยของอาหาร หรือมาตรฐานอาหาร หรือการรับรองคุณภาพอาหาร หรือการพัฒนาผลิตภัณฑ์อาหาร คุณสมบัติผู้เข้าสอบ ปริญญาตรีวิทยาศาสตร์และเทคโนโลยีทางอาหาร และสาขาที่เรียกชื่อเป็นอย่างอื่น ซึ่งมีหลักสูตรตามเกณฑ์ขั้นต่ำที่ AIAC ให้การรับรอง สำเร็จการศึกษาขั้นต่ำปริญญาตรี ทางด้านวิทยาศาสตร์สาขาอื่น และต้องมีประสบการณ์ที่เกี่ยวข้องกับโรงงานอุตสาหกรรมอาหาร
สมัครสมาชิก

สนับสนุนโดย / Supported By

  • บริษ้ท มาเรล ฟู้ดส์ ซิสเท็ม จำกัด จัดจำหน่ายเครื่องจักรและอุปกรณ์การแปรรูปอาหาร เช่น ระบบการชั่งน้ำหนัก, การคัดขนาด, การแบ่ง, การตรวจสอบกระดูก และการประยุกต์ใช้ร่วมกับโปรแกรมคอมพิวเตอร์ พร้อมกับบริการ ออกแบบ ติดตั้ง กรรมวิธีการแปรรูปทั้งกระบวนการ สำหรับ ผลิตภัณฑ์ ปลา เนื้อ และ สัตว์ปีก โดยมีวิศวกรบริการและ สำนักงานตั้งอยู่ที่กรุงเทพ มาเรล เป็นผู้ให้บริการชั้นนำระดับโลกของอุปกรณ์การแปรรูปอาหารที่ทันสมัย​​ครบวงจรทั้งระบบ สำหรับอุตสาหกรรม ปลา กุ้ง เนื้อ และสัตว์ปีก ต่างๆ เครื่องแปรรูปผลิตภัณฑ์สัตว์ปีก Stork และ Townsend จาก Marel อยู่ในกลุ่มเครื่องที่เป็นที่ยอมรับมากที่สุดในอุตสาหกรรม พร้อมกันนี้ สามารถบริการครบวงจรตั้งแต่ต้นสายการผลิตจนเสร็จเป็นสินค้า เพื่ออำนวยความสะดวกให้กับทุกความต้องการของลูกค้า ด้วยสำนักงานและบริษัทสาขามากกว่า 30 ประเทศ และ 100 เครือข่ายตัวแทนและผู้จัดจำหน่ายทั่วโลก ที่พร้อมทำงานเคียงข้างลูกค้าเพื่อขยายขอบเขตผลการแปรรูปอาหาร Marel Food Systems Limited. We are supply weighing, grading, portioning, bone detection and software applications as well as complete turn-key processing solutions for fish, meat and poultry. We have service engineer and office in Bangkok. Marel is the leading global provider of advanced food processing equipment, systems and services to the fish, meat, and poultry industries. Our brands - Marel, Stork Poultry Processing and Townsend Further Processing - are among the most respected in the industry. Together, we offer the convenience of a single source to meet our customers' every need. With offices and subsidiaries in over 30 countries and a global network of 100 agents and distributors, we work side-by-side with our customers to extend the boundaries of food processing performance.
  • วิสัยทัศน์ของบริษัท คือ การอยู่ในระดับแนวหน้า "ฟอร์ฟร้อนท์" ของเทคโนโลยีประเภทต่างๆ และนำเทคโนโลยีนั้นๆ มาปรับใช้ให้เหมาะสมกับอุตสาหกรรมและกระบวนการผลิตในประเทศไทย เพื่อผลประโยชน์สูงสุดของลูกค้า บริษัท ฟอร์ฟร้อนท์ ฟู้ดเทค จำกัด เชื่อมั่นและยึดมั่นในอุดมการณ์การดำเนินธุรกิจ กล่าวคือ จำหน่าย สินค้าและให้บริการที่มีคุณภาพสูง ซึ่งเหมาะสมกับความต้องการของลูกค้า ด้วยความซื่อสัตย์และความตรงต่อเวลา เพื่อการทำธุรกิจที่ประสบความสำเร็จร่วมกันระยะยาว Our vision is to be in the "forefront" of technology in its field and suitably apply the technology to industries and production in Thailand for customers' utmost benefits. Forefront Foodtech Co., Ltd. strongly believes in and is committed to our own business philosophy which is to supply high quality products and service appropriately to each customer's requirements with honesty and punctuality in order to maintain long term win-win business relationship. Forefront Foodtech Co., Ltd. is the agent company that supplies machinery and system, install and provide after sales service as well as spare parts. Our products are: Heinrich Frey Maschinenbau Gmbh, Germany: manufacturer of vacuum stuffers and machinery for convenient food Kronen GmbH, Germany: manufacturer of machinery for vegetable and fruits from washing to packing Nock Fleischerei Maschinenbau GmbH, Germany: manufacturer of skinning machines, membrane skinning machine, slicers and scale ice makers K + G Wetter GmbH, Germany: manufacturer of grinders and bowl cutters Ness & Co. GmbH, Germany: manufacturer of smoke chambers, both stand alone and continuous units Dorit DFT GmbH, Germany: manufacturer of tumblers and injectors Maschinenfabrik Leonhardt GmbH, Germany: manufacturer of dosing and filling equipment
  • We are well known for reliable, easy-to-use coding and marking solutions which have a low total cost of ownership, as well as for our strong customer service ethos. Developing new products and a continuous programme of improving existing coding and marking solutions also remain central to Linx's strategy. Coding and marking machines from Linx Printing Technologies Ltd provide a comprehensive solution for date and batch coding of products and packaging across manufacturing industries via a global network of distributors. In the industrial inkjet printer arena, our reputation is second to none. Our continuous ink jet printers, laser coders, outer case coders and thermal transfer overprinters are used on production lines in many manufacturing sectors, including the food, beverage, pharmaceutical, cosmetics, automotive and electronic industries, where product identification codes, batch numbers, use by dates and barcodes are needed. PTasia, THAILAND With more than 3,700 coding, marking, barcode, label applicator, filling, packing and sealing systems installed in THAILAND market. Our range is includes systems across a wide range of technologies. To select the most appropriate technology to suit our customers. An excellent customer service reputation, together with a reputation for reliability that sets standards in the industry, rounds off the PTAsia offering and provides customers with efficient and economical solutions of the high quality. Satisfyingcustomers inTHAILAND for 10 years Our 1,313 customers benefit from our many years of experience in the field, with our successful business model of continuous improvement. Our technical and service associates specialise in providing individual advice and finding the most efficient and practical solution to every requirment. PTAsia extends its expertise to customers in the food, beverage, chemical, personal care, pharmaceutical, medical device, electronics, aerospace, military, automotive, and other industrial markets.