ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดถั่วดำ (Effect of moisture content on physical properties of black beans) สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ชาลิสา จันทร์แก้ว ฐิติชลลดา เหลืองสกุล ลดาวัลย์ พลมั่น วสันต์ อินทร์ตา บทคัดย่อ การศึกษาผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดถั่วดำโดยค่าความยาวเฉลี่ย,ความกว้างเฉลี่ย และความหนาเฉลี่ย คือ 12.21 mm, 8.02 mm และ 5.98mm ตามลำดับ ที่ความชื้นฐานเปียก 4.99 % ในช่วงความชื้นฐานเปียกเพิ่มขึ้นจาก4.99 % ถึง 16.99 % ศึกษาพบว่า มีการเพิ่มขึ้นของมวลเมล็ดถั่วดำ 1000 เมล็ด จาก 240.47 g ถึง 257.73 g, เส้นผ่าศูนย์กลางเฉลี่ย จาก 7.589 mm ถึง 8.361 mm,ความเป็นทรงกลม จาก 0.685 ถึง 0.701 , สัมประสิทธิ์ความเสียดทานสถิตของเมล็ดถั่วดำ เพิ่มขึ้นเป็นเส้นตรง โดยมีวัสดุ 3 ชนิด คือ แผ่นยาง (0.508-0.613) , แผ่นไม้ (0.347-0.394) และ แผ่นสแตนเลส (0.358-0.416) , พื้นที่ภาพฉาย จาก 0.54 cm2 ถึง 0.85 cm2 และความเร็วลมสุดท้าย จาก 10.939 m.s-1 ถึง 11.562 m.s-1 และเมื่อความชื้นฐานเปียกเพิ่มขึ้นจาก 4.99 % ถึง 16.99 % มีการลดลงของความหนาแน่นรวมจาก 81.76 g.ml-1 ถึง 75.33 g.ml-1, และความหนาแน่นเนื้อ จาก 1.523 g.ml-1 ถึง 1.602 g.ml-1 1. บทนำ ถั่วดำ (Vignasinensis) เป็นพืชที่มีองค์ประกอบส่วนใหญ่เป็นแป้งมีโปรตีนสูง ไขมันต่ำ มีคาร์โบไฮเดรตสูง เป็นพืชล้มลุก มีขนสีน้ำตาล ดอกเป็นช่อสีเหลือง ฝักแห้งแตก เปลือกหุ้มเมล็ดเป็นสีดำ มีสารพวกแอนโทไซยานิน จากข้อมูลทางโภชนาการของสารอาหารในถั่วดำพบว่าถั่วดำ 100 g ประกอบไปด้วย โปรตีน 21.60g ,ไขมัน 1.42 g , คาร์โบไฮเดรต 62.36 g ,ใยอาหาร 4.6 g เถ้า 3.8 gและน้ำตาล 2.12g ,อีกทั้งอุดมไปด้วยแร่ธาตุต่างๆ เช่น โฟเลท แมกนีเซียม กรดแอลฟาลิโนริอิด วิตามินบี ใยอาหารเป็นต้น ถั่วดำช่วยลดอัตราเสี่ยงต่อโรคหัวใจ มีรสหวาน บำรุงเลือด ขับของเหลวในร่างกาย ขับลม ขจัดพิษ บำรุงไต ขับเหงื่อ แก้ร้อนใน บำรุงสายตา เหมาะสำหรับผู้ที่มีอาการบวมน้ำ เหน็บชา ดีซ่าน และ ไตเสื่อม ทั้งยังนำมาใช้เป็นใส่ในขนมไทยโดยใส่ทั้งเมล็ด เช่นข้าวต้มมัด ข้าวหลาม ถั่วดำต้มน้ำตาล ขนมถั่วดำ คุณสมบัติทางกายภาพนั้นขึ้นอยู่กับความชื้นของเมล็ดถั่วดำ คุณสมบัติทางกายภาพที่ได้ศึกษา ได้แก่ ขนาด,มวล 100 เมล็ด, ปริมาตรต่อถั่ว 1 เมล็ด,เส้นผ่าศูนย์กลางเฉลี่ย, ความเป็นทรงกลม, ความหนาแน่นรวม, ความหนาแน่นเนื้อ,มุมเอียง, สัมประสิทธิ์ความเสียดทานสถิตย์, พื้นที่ภาพฉาย, ความเร็วสุดท้ายและ สัมประสิทธิ์ความต้านทานเชิงอากาศพลศาสตร์ ดังนั้นการกำหนดคุณสมบัติทางกายภาพของเมล็ด ถั่วดำ จึงเป็นสิ่งจำเป็นสำหรับการออกแบบเครื่องมืออุปกรณ์ การเก็บเกี่ยวการคัดแยก การจัดการ กรรมวิธีการขนส่งลำเลียงการจัดเก็บรักษา และการแปรรูปผลิตภัณฑ์ เพื่อให้สะอาด ปลอดภัย และไม่เกิดความเสียหาย ด้วยเหตุนี้ทางคณะผู้จัดทำจึงได้ทำการวิจัยเพื่อศึกษาผลของความชื้นที่มีผลต่อคุณสมบัติทางกายภาพของเมล็ดถั่วดำ โดยการหาความสัมพันธ์ระหว่างสองตัวแปรนี้ 2. วัสดุและวิธีทดลอง 2.1 การเตรียมวัสดุ คัดเมล็ดถั่วดำที่เปราะ แตกและไม่สมบูรณ์ทิ้งจำนวน 1000 เมล็ด 2.2 ปรับความชื้นถั่วดำ นำถั่วดำมาค่าความชื้นเริ่มต้นชั่งเมล็ดถั่วดำ 3-5กรัม นำเข้าตู้อบที่อุณหภูมิ 105๐ c (ระวังไม่ควรให้นิ้วมีสัมผัสกับเมล็ดเพราะจะทำให้ค่าความชื้นเปลี่ยนแปลงไป) เป็นเวลา 2 ชั่วโมง หลังจากอบเสร็จนำมาชั่งน้ำหนัก แล้วหาความชื้นฐานเปียก (%Wet basis) จาก ระดับความชื้นที่ 2, 3, 4 และ 5 ปรับความชื้นโดยการเพิ่มน้ำให้มีน้ำหนักตามความสัมพันธ์ของสมการ 2.3 ขนาด (Size) ใช้เวอร์เนียคาร์ลิปเปอร์วัดเมล็ดถั่วดำ ทั้ง 3 ด้าน ได้แก่ ด้านความยาว (a) ความกว้าง (b) และ ความหนา (c) เป็นหน่วยมิลลิเมตรความชื้นละ100 เมล็ด แล้วหาค่าเฉลี่ย (average) และส่วนเบี่ยงเบนเฉลี่ยมาตรฐาน (S.D.) ของถั่วดำ 100 เมล็ดทุกความชื้น 2.4 เส้นผ่านศูนย์กลางเชิงเรขาคณิต (GMD) นำข้อมูลที่ได้จากการวัดขนาดถั่วดำในแต่ละระดับความชื้นไปหาค่าเฉลี่ยเพื่อคำนวณหาเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราขาคณิตจากสมการ 2.5 ความเป็นทรงกลม (Sphericity) ค่าที่พิจารณาจะมีความใกล้เคียงกับความเป็นทรงกลมของวัสดุ ซึ่งวัสดุที่เป็นทรงกลมสัมบูรณ์ จะมีค่าความเป็นทรงกลมเท่ากับ 1 ซึ่งสามารถหาค่าความเป็นทรงกลมได้จากสมการ 2.6 มวล 1000 เมล็ด (Mass of fifty seeds) นำเมล็ดถั่วดำ 1000 เมล็ด ในแต่ละระดับความชื้น มาชั่งน้ำหนักด้วยเครื่องชั่งน้ำหนักดิจิตอลความละเอียดอ่านค่าทศนิยม4 ตำแหน่ง ทำการทดลอง3ครั้ง แล้วหาค่าเฉลี่ย 2.7 พื้นที่ภาพฉาย (Projected Area) ถ่ายรูปเมล็ดถั่วดำ 50เมล็ด ทุกๆความชื้นด้วยกล้องโทรศัพท์ IPhone 4sพร้อมสเกลที่ทราบพื้นที่ เพื่อใช้ในการเปรียบเทียบสัดส่วน ใช้โปรแกรม Adobe Photoshop Cs3 วิเคราะห์หาจำนวน pixel ของภาพ แล้วหาพื้นที่ภาพฉายโดยการเทียบสเกลที่ทราบพื้นที่ 2.8 ความหนาแน่นเนื้อ (Solid density) ความหนาแน่นเนื้อของเมล็ดถั่วดำใช้หลักการแทนที่ของเหลว โดยชั่งน้ำหนักเมล็ดถั่วดำ 40เมล็ด จากนั้นเติมเฮกเซนลงในขวดpycnometer ซึ่งมีปริมาตร 50 ml จนเต็ม ใส่เมล็ดถั่วดำจำนวน 40 เมล็ดลงไป ปริมาตรเฮกเซนที่ถูกแทนที่คือปริมาตรของตัวอย่าง จากความสัมพันธ์ดังสมการ 2.9 ความหนาแน่นรวม (Bulk density) คือ อัตราส่วนระหว่างมวลของตัวอย่างกับปริมาตรของภาชนะที่บรรจุ โดยนำเมล็ดถั่วดำใส่ภาชนะที่ทราบปริมาตร ปาดเมล็ดถั่วดำให้ขนานกับถ้วย แล้วนำไปชั่งน้ำหนักหารด้วยปริมาตรได้ความสัมพันธ์ดังสมการ 2.10ความพรุน (porosity) สามารถคำนวณหาจากความสัมพันธ์ดังสมการ 2.11 สัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) หามุมเอียงได้จากการนำแผ่นรองพื้นผิวทั้ง 3 ลักษณะได้แก่ แผ่นอลูมิเนียม แผ่นไม้ และแผ่นยาง มาติดกับเครื่องวัดมุมเอียงแล้วนำเมล็ดถั่วดำทุกระดับความชื้น ความชื้นละ10เมล็ด มาวางที่ตำแหน่งเดียวกัน ครั้งละ1เมล็ด ค่อยๆยกพื้นขึ้นจนเมล็ดถั่วดำไหลลงอย่างอิสระจึงอ่านค่าทำการทดลองซ้ำโดยเปลี่ยนแผ่นรองให้ครบทั้ง 3 ลักษณะ สามารถคำนวณหาจากความสัมพันธ์ดังสมการ 3. ผลการทดลอง และการวิจารณ์ ค่าสูงสุด ต่ำสุด ค่าเฉลี่ยและ SD ของคุณสมบัติทางกายภาพของเมล็ดถั่วดำ 3.1 ขนาดเมล็ด (Size) ปริมาณความชื้นส่งผลต่อขนาดของความยาว ความกว้าง และความหนา ของเมล็ดถั่วดำ โดยเมื่อปริมาณความชื้นเพิ่มขึ้น ความยาว ความกว้าง ความหนา ของเมล็ดถั่วดำมีแนวโน้มเพิ่มขึ้น เนื่องจากถั่วดำเป็นพืชที่มีองค์ประกอบส่วนใหญ่เป็นแป้ง เมื่อแป้งได้รับความชื้นจะทำให้เมล็ดถั่วดำเกิดการขยายตัว จากรูปที่ 1 , 2 , 3 กราฟมีแนวโน้มเพิ่มขึ้น และพบว่าค่า ของควายาวมีค่ามากที่สุดแสดงว่าถั่วดำมีการขยายตัวด้านความยาวมากที่สุดสมการความสัมพันธ์มีดังนี้ : ความยาว y = 0.064x + 6.910 ;R² = 0.986 ความกว้าง y = 0.125x + 9.966 ;R² = 0.975 ความหนา y = 0.035x + 5.171 ;R² = 0.879 รูปที่ 1 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความกว้าง ความยาว และความหนาของเมล็ดถั่วดำ จากการผลทดลองสอดคล้องกับงานวิจัยของYalcm (2006) ซึ่งศึกษาเมล็ดถั่วพุ่ม 3.2 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) จากกราฟพบว่าเมื่อระดับความชื้นฐานเปียกเพิ่มขึ้นเมล็ดถั่วดำมีการขยายตัว ค่าเส้นผ่าศูนย์กลางเฉลี่ยเชิงเรขาคณิตของเมล็ดถั่วดำจึงมีค่าเพิ่มขึ้นจาก7.589g ถึง 8.3613g เส้นแนวโน้มเป็นเส้นตรงดังรูปที่ 4 ซึ่งมีสมการความสัมพันธ์ : y = 0.056x + 7.316 ;R² = 0.916 รูปที่ 2 ความสัมพันธ์ ระหว่าง ความชื้นฐานเปียกกับค่าเส้นผ่าศูนย์กลางเฉลี่ยเชิงเรขาคณิตของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของ Coskunetal (2005) , ซึ่งศึกษาเมล็ดข้าวโพด 3.3 ความเป็นทรงกลม (Sphericity) เส้นกราฟมีความชันเพิ่มขึ้นอธิบายได้ว่าเมื่อเมล็ดถั่วดำได้รับความชื้นเพิ่มขึ้นส่งผลให้เกิดความเป็นทรงกลมมากขึ้นสอดคล้องกับด้านความหนาที่เพิ่มขึ้นเช่นกันเมื่อได้รับน้ำจึงเกิดการขยายตัวของความหนามากกว่า ความกว้างและความยาวจึงสรุปได้ว่าความชื้นแปรผันตรงกับความเป็นทรงกลม ดังรูปที่ 5 ซึ่งมีสมการความสัมพันธ์ y = 0.001x + 0.679 R²=0.962 รูปที่ 3 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความเป็นทรงกลมของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของ ISIK และ UNAL (2007) ซึ่งศึกษาเมล็ดถั่วแดง 3.4 มวล 1000 เมล็ด (Mass) เมื่อระดับความชื้นเพิ่มขึ้น มวล 1000 เมล็ดจะเพิ่มขึ้นเป็นเส้นตรงจาก 240.47 g ถึง 257.73 g เนื่องจากถั่วดำเป็นพืชที่มีองค์ประกอบส่วนใหญ่เป็นแป้ง เมื่อแป้งได้รับความชื้นจะทำให้เมล็ดถั่วดำเกิดการขยายตัว น้ำหนักของเมล็ดถั่วดำจึงเพิ่มขึ้นตามความชื้นที่เพิ่มขึ้น ดังรูปที่ 6 ซึ่งมีสมการความสัมพันธ์ : y = 1.36x + 234.3 ; ( = 0.996) รูปที่ 4 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและมวลถั่วดำ 100 เมล็ด จากการทดลองสอดคล้องกับงานวิจัยของ ISIK UNAL (2007) ซึ่งศึกษาเมล็ดถั่วแดง 3.5 พื้นที่ภาพฉาย (Projected area of seed) จากกราฟพบว่าเมื่อระดับความชื้นฐานเปียกของถั่วดำเพิ่มขึ้นจะส่งผลให้ขนาดของเมล็ดถั่วดำเกิดการขยายตัวทำให้พื้นที่ภาพฉายเพิ่มขึ้น สรุปได้ว่าความชื้นแปรผันตรงกับพื้นที่ภาพฉายของเมล็ดถั่วดำดังรูปที่ 7 ซึ่งมีสมการความสัมพันธ์ : y = 0.035x + 0.260 ; ( =0.997) รูปที่ 5 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและพื้นที่ภาพฉายของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของRazavietal (2006) ซึ่งศึกษาเมล็ดถั่ว pistachin. 3.6 ความหนาแน่นเนื้อ (Solid density) กราฟแสดงความสัมพันธ์ ระหว่าง ความชื้นฐานเปียกกับค่าความหนาแน่นเนื้อของเมล็ดถั่วดำจากกราฟพบว่าเมื่อระดับความชื้นฐานเปียกของถั่วดำเพิ่มขึ้นจะส่งผลให้ขนาดของเมล็ดถั่วดำใหญ่ขึ้น จึงมีปริมาตรเพิ่มขึ้นดังความสัมพันธ์ของสมการ = M/V ทำให้ค่าความหนาแน่นเนื้อลดลง สรุปได้ว่าความชื้นแปรผกผันกับความหนาแน่นเนื้อของเมล็ดถั่ว ดังรูปที่ 8 ซึ่งมีสมการความสัมพันธ์ : y = 0.006x + 1.478 ; =0.945 รูปที่6 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความหนาแน่นเนื้อของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของYalcm (2006) ซึ่งศึกษาเมล็ดถั่วพุ่ม 3.7 ความหนาแน่นรวม (Bulk density ) จากกราฟแสดงความสัมพันธ์ระหว่างผลของความชื้นต่อความหนาแน่นรวมของเมล็ดถั่วดำอธิบายได้ว่าเมื่อถั่วดำได้รับความชื้นเพิ่มขึ้นจะส่งผลให้ขนาดของเมล็ดถั่วใหญ่ขึ้นสอดคล้องกับผลการทดลองที่ปริมาตรเพิ่มขึ้นดังนั้นจึงมีความหนาแน่นรวมลดลง ความสัมพันธ์ตามสมการ Pb = Mb/V สรุปได้ว่าความชื้นแปรผกผันกับความหนาแน่นรวมของเมล็ด ถั่วดำดังรูปที่ 10 ซึ่งมีสมการความสัมพันธ์ : y = -0.000x + 0.754 ; ( =0.897) รูปที่ 7 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความหนาแน่นรวมของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของYalcm (2006) ซึ่งศึกษาเมล็ดถั่วพุ่ม 3.8ความพรุน (porosity) กราฟแสดงความสัมพันธ์ระหว่างความพรุนกับความชื้นฐานเปียก ค่าความพรุนของเมล็ดถั่วดำ จากกราฟมีความชันเพิ่มขึ้นแสดงว่า เมื่อเมล็ดถั่วดำได้รับความชื้นเพิ่มขึ้นส่งผลให้มีความพรุนเพิ่มขึ้น จึงสรุปได้ว่าค่าความชื้นแปรผันตรงกับค่าความพรุน ดังรูปที่11 ซึ่งมีสมการความสัมพันธ์ : y=0.258x+49.34 ; R² = 0.956 รูปที่ 8 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความพรุน 3.9สัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) จากกราฟมีความชันเพิ่มขึ้นอธิบายได้ว่าเมื่อเมล็ดถั่วดำได้รับความชื้นเพิ่มขึ้นจะส่งผลให้เกิดการขยายตัวทำให้น้ำหนักเพิ่มขึ้นส่งผลให้เมล็ดถั่วไหลลงจากพื้นเอียงด้วยความเร็วที่เพิ่มขึ้นและมุมเอียงที่เพิ่มขึ้นด้วยเช่นกันจึงสรุปได้ว่าความชื้นแปรผันตรงกับสัมประสิทธิ์ความเสียดทานสถิตย์ดังรูปที่11ซึ่งมีสมการความสัมพันธ์ : แผ่นยาง y = 0.008x + 0.450 ; ( =0.870) แผ่นไม้ y = 0.004x + 0.334 ; ( =0.923) แผ่นสแตนเลสy = 0.003x + 0.332 ; ( =0.941) รูปที่ 9 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและสัมประสิทธิ์ ความเสียดทานสถิตของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของYalcm (2006) ซึ่งศึกษาเมล็ดถั่วพุ่ม 3.10ความเร็วสุดท้าย (Terminal valocity) จากกราฟพบว่าเมื่อระดับความชื้นฐานเปียกเพิ่มขึ้นความเร็วสุดท้ายของเมล็ดถั่วดำมีค่าเพิ่มขึ้นเนื่องจากความชื้นที่เพิ่มขึ้นทำให้ถั่วดำมีมวลมากความเร็วลมที่ใช้ต้านย่อมมากเช่นกันดังนั้นความเร็วสุดท้ายของเมล็ดถั่วดำแปรผันตรงกับความชื้น ดังรูปที่ 12 ซึ่งมีสมการความสัมพันธ์ : y = 0.053x + 10.70 ; ( =0.929) รูปที่10 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความเร็วสุดท้ายของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของ ISIK และ UNAL (2007) ซึ่งศึกษาเมล็ดถั่วแดง 4. สรุปผลการทดลอง จากผลการทดลองจะพบว่า ความยาว ความกว้าง และความหนา ของถั่วดำมีความสัมพันธ์แบบเป็นเชิงเส้น เมื่อค่าความชื้นโดยเฉลี่ยเพิ่มขึ้นซึ่งมวลของเมล็ดถั่วดำ 1000 เมล็ด มีค่าเพิ่มขึ้นจาก 240.47 g ถึง 257.73 g เมื่อค่าความชื้นเพิ่มขึ้น ความเป็นทรงกลม เพิ่มขึ้นจาก จาก 0.6858ถึง 0.7013และเส้นผ่านศูนย์กลางเฉลี่ยของเมล็ดถั่วดำมีแนวโน้มเพิ่มขึ้นจาก จาก 7.589 mm ถึง 8.3613 mm เมื่อค่าความชื้นเพิ่มขึ้นและความหนาแน่นรวมของเมล็ดถั่วดำจะมีค่าลดน้อยลงจาก0.7502 ถึง 0.7426 เนื่องจากเมล็ดถั่วมีการดูดซึมน้ำเข้าไปจึงทำให้มีน้ำหนักเมล็ดเพิ่มขึ้น เมื่อค่าความชื้นเพิ่มขึ้นความหนาแน่นเนื้อของเมล็ดถั่วดำจะมีค่าเพิ่มขึ้นจาก 1.523 ถึง 1.602 เมื่อค่าความชื้นเพิ่มขึ้น ค่าสัมประสิทธิ์ความเสียดทานสถิตของแผ่นสแตนเลส ไม้ ยาง มีค่าเพิ่มขึ้น แผ่นยาง (0.5083 -0.613) , แผ่นไม้ (0.347-0.394) และ แผ่นอลูมิเนียม (0.358-0.416) เมื่อค่าความชื้นเพิ่มขึ้นพื้นที่ภาพฉายของเมล็ดถั่วดำมีค่าเพิ่มขึ้นจาก จาก 0.54 ถึง 0.85 เมื่อค่าความชื้นโดยเฉลี่ยเพิ่มขึ้นความเร็วลมสุดท้าย (m/s) มีค่าเพิ่มขึ้นจาก จาก 10.939 ถึง 11.562 เมื่อค่าความชื้นโดยเฉลี่ยเพิ่มขึ้น จากผลการทดลองข้างต้นจะพบว่าเมล็ดของถั่วดำจะมีความยาว ความกว้าง และความหนา ความเป็นทรงกลม เส้นผ่านศูนย์กลางเฉลี่ยของเมล็ดความหนาแน่นรวมของเมล็ดความหนาแน่นเนื้อของเมล็ดค่าสัมประสิทธิ์ความเสียดทานสถิตของแผ่นสแตนเลส ไม้ ยาง พื้นที่ภาพฉายของเมล็ดความเร็วลมสุดท้ายความพรุน ค่าต่างๆที่ความชื้นต่างและผลของความชื้นต่อข้อมูลต่างๆ จะสามารถนำไปใช้ประโยชน์ในงานอุตสาหกรรมต่างๆได้ เช่น ใช้ในการออกแบบผลิตภัณฑ์ บรรจุภัณฑ์ และการขนส่งเป็นต้น อ้างอิง EbubekirAltuntas, Mehmet Yildiz (2005) . Effect of moisture content on some physical and mechanical properties of faba bean. Journal of Food Engineering,174-183. Esref ISIK, Halil UNAL (2007) . Moisture - dependent physical properties of white speckled red kidney bean grains. Journal of Food Engineering,209-216. Ibrahim Yalcin, (2006) . Physical properties of cowpea seeds. Journal of Food Engineering,57-62. M.BulentCoskun, Ibrahim Yalcin, CengizOzarslan (2005) . Physical properties of sweet corn seeds. Journal of FoodEngineering,523-528. SeyedM.A.Razavi,B. Emadzadeh,A.Rafe,A. Mohammad Amini (2006) . Physical properties of pistachin nut and its kernel as a function of moisture content and variety : Part I. Geometrical properties. Journal of Food Engineering,209-217. Choung, M.G., Baek, I.Y., Kang, S.T., Han, W.Y., Shin, D.C., Moon, H.P., Kang,K.H., 2001. Isolation and determination of anthocyanins in seed coats of blacksoybean (Glycine max (L.) Merr.) .J. Agric. Food Chem. 49, 5848-5851. IYalcım . (2007) . Physical properties of cowpea seed (Vignasinensis L.) . Journal of Food Engineering. Pages (1405-1409) I. Yalc,ın , C. O zarslan, T. Akbas. (2007) . Physical properties of pea (Pisumsativum) seed.Journal of Food Engineering. Pages (731 - 735) Mustafa Cetin. (2007) . Physical properties of barbunia bean (Phaseolus vulgaris L. cv. 'Barbunia') seed. Journal of Food Engineering. Pages (353 - 358) E. Dursun; I. Dursun. (2007) . Some Physical Properties of Caper Seed.Journal of Food Engineering. Pages (1426 - 1431) R.C. Pradhana, S.N. Naika,, N. Bhatnagarb, V.K. Vijaya . (2009) . industrial crops and products29 Pages (341-347) OnderKabas, Aziz Ozmerzi, Ibrahim Akinci. (2005) . Physical properties of cactus pear (Opuntiaficusindia L.) grown wild in Turkey. Journal of Food Engineering .Pages (1405-1409) http://www.nectec.or.th/schoolnet/library/webcontest2003/100team/dlss020/A2/A2-17.html http://atcloud.com/stories/21247