ตารางที่ 7.4 ปริมาณเถ้าถ่านที่เหลือจากการเผาไหม้โดยไม่ทำปฏิกิริยา (Inert Residue) ค่าของพลังงานที่ได้จากการเผาและปริมาณซัลเฟอร์จาก 1 ตันของบรรจุภัณฑ์ประเภทต่างๆ บรรจุภัณฑ์ Inert Residue (%) พลังงาน (บีทียู/ปอนด์) เปอร์เซ็นต์ซัลเฟอร์ โดยน้ำหนักที่แห้ง กระดาษแข็ง 4 7,841 0.14 กระดาษอื่นๆ 8 7,793 0.12 โลหะ 91 742 0.01 แก้ว 99 84 0.00 ไม้ 3 8,236 0.11 ฟิล์มพลาสติก 7 13,846 0.07 พลาสติกต่างๆ 20 9,049 0.55 แหล่งที่มา : Darnay, A. and Franklin, W.E. "The Role of Packaging in Solid Waste Management 1996 to 1976." คุณสมบัติอย่างอื่นที่ต้องพิจารณาคือ ค่าของพลังงานที่ได้จากการเผา (BTU Content) ปริมาณของซัลเฟอร์ และโอกาสที่จะทำให้เตาเผาเสียหาย ค่าของพลังงานที่ได้จากการเผาเป็นองค์ประกอบสำคัญในการเลือกเตาเผา เพราะว่าพลังงานที่ได้จากการเผาสามารถนำไปใช้ได้ใหม่ ส่วนปริมาณซัลเฟอร์ที่ได้นั้นสามารถใช้เป็นดรรชนีในการวัดความเป็นพิษของขยะและซากบรรจุภัณฑ์ที่ได้จากการเผาไหม้ ในตารางที่ 7.4 พบว่าซากบรรจุภัณฑ์ที่เผาไหม้ก่อให้เกิดปริมาณซัลเฟอร์ค่อนข้างน้อย กล่าวคือ ใน 1 ตันของบรรจุภัณฑ์จะมีปริมาณซัลเฟอร์ไม่มากกว่า 1 กิโลกรัม สำหรับอากาศที่จะทำความเสียหายให้แก่เตาเผานั้น บรรจุภัณฑ์แก้วมีโอกาสมากที่สุด เนื่องจากเมื่อแก้วหลอมละลายแล้ว น้ำแก้วมีโอกาสติดหลงเหลืออยู่ตามผนังของเตาเผาจะทำให้ผนังของเตาเผาแตกได้ ถ้าเผาถึงอุณหภูมิ 700°C พลาสติกบางประเภทที่อยู่ในรูปของถาดและขวดหนาๆ อาจก่อให้เกิดปัญหาได้เช่นกัน เพราะเมื่อหลอมละลายแล้วมีโอกาสแข็งตัวและอุดช่องทางออกจากเตาเผาเมื่อสัมผัสกับอากาศในบรรยากาศพลาสติกที่มีผิวบางและฟิล์มไม่ค่อยประสบปัญหาในการทำความเสียหายให้แก่เตาเผา การทำให้บรรจุภัณฑ์เสื่อมสลายโดยวิธีการทางชีวภาคนั้น การกำจัดซากบรรจุภัณฑ์วิธีสุดท้ายที่เริ่มได้รับความนิยมคือ Biodegradation วิธีนี้จะประยุกต์ใช้ได้เฉพาะสารอินทรีย์ ดังนั้นจึงใช้ได้เฉพาะบรรจุภัณฑ์อาหารที่ผลิตจากกระดาษ ไม้และสิ่งทอ ซากบรรจุภัณฑ์ที่ผลิตจากวัสดุเหล่านี้จะเสื่อมสลายทางชีวภาคช้าหรือเร็วขึ้นอยู่กับความหนา หรือส่วนประกอบของบรรจุภัณฑ์ที่เคลือบด้วยสารที่ไม่เสื่อมสลายได้ (Nondegradable) ซากบรรจุภัณฑ์ที่ได้รับการย่อยสลายทางชีวภาคนี้แล้วจะกลายเป็นสารอินทรีย์ที่ไม่ทำปฏิกิริยา (Inert Organic Materials) ซึ่งมักจะใช้ประโยชน์เป็นสารปรับคุณภาพของดิน (Soil Conditioning) ในการประยุกต์เทคโนโลยีทางชีวภาคมาใช้ในการย่อยสลายซากบรรจุภัณฑ์จำต้องคำนึงความสามารถที่จะย่อยสลายด้วยบักเตรี และพิจารณาถึงผลที่ได้จากการย่อยสลายว่าจะนำไปใช้ประโยชน์อะไรต่อไปได้ จากความรู้ของวจรบรรจุภัณฑ์และวิธีการกำจัดซากบรรจุภัณฑ์อาหารดังกล่าว ย่อมเป็นแนวทางให้ผู้ออกแบบบรรจุภัณฑ์สามารเลือกประเภทวัสดุที่มีวงจรชีวิตสั้นและสามารถกำจัดได้ง่ายหรือกล่าวอีกนัยหนึ่งคือมีโอกาสเป็นมิตรกับสิ่งแวดล้อมมากขึ้น 7.2 สถานะของวัสดุบรรจุภัณฑ์ต่อสิ่งแวดล้อม สถานะของวัสดุบรรจุภัณฑ์แต่ละประเภทที่มีต่อการใช้งานและผลกระทบที่มีต่อสิ่งแวดล้อมสามารถแยกตามประเภทของวัสดุได้ดังนี้ 7.2.1 บรรจุภัณฑ์ผลิตจากเยื่อและกระดาษ การเวียนมาผลิตใหม่เป็นคุณสมบัติเด่นของวัสดุเยื่อและกระดาษ เยื่อเส้นใยยาวเป็นเยื่อที่เหมาะสมในการนำมาผลิตใหม่มากที่สุด โดยปกติจะนำมาผลิตใหม่ได้ 4 ครั้ง จากนั้นแล้วคุณภาพของเยื่อจะเริ่มเสื่อมคุณภาพ กระดาษที่นำกลับมาผลิตใหม่อาจแบ่งเป็น กระดาษหนังสือพิมพ์ กระดาษเหนียวสีน้ำตาลดังรูปสัญลักษณ์ที่แสดงไว้ในรูป (ก) หน้า 228 และกล่องกระดาษแข็งที่ผิวด้านหลังเป็นสีขาว มีสิ่งที่น่าสังเกตในแง่ของพลังงานที่ใช้ในการผลิตแปรรูปบรรจุภัณฑ์กระดาษซึ่งมีค่าน้อยมากเมื่อเทียบกับพลังงานที่ใช้ในการผลิต กล่าวคือการใช้พลังงานในการผลิตบรรจุภัณฑ์จะใช้ประมาณร้อยละ 5ของพลังงานที่ใช้ในการผลิตกระดาษ ในปี พ.ศ. 2539 คนไทยใช้กระดาษรวมโดยเฉลี่ยคนละ 37 กิโลกรัมต่อปี หรือประมาณ 2,000,000 ตันต่อปี มีอัตราการเพิ่มขึ้นจากปี 2537 ประมาณร้อยละ 15 และมีอัตราเพิ่มขึ้นเรื่อยๆ ในกระบวนการผลิตกระดาษ 1 ตันต้องใช้ต้นไม้ประมาณ 1.2 - 2.2 ตัน (น้ำหนักอบแห้ง) กระแสไฟฟ้า 1,000 กิโลวัตต์ต่อชั่วโมง ใช้น้ำมัน 300 ลิตร ใช้น้ำ 20 ลูกบาศก์เมตร ในขณะเดียวกันมีการนำเข้าเศษกระดาษ โดยในปี 2535 มีการนำเข้า 342,700 ตัน และในปี 2540 มีการนำเข้า 460,596 ตัน จากปริมาณดังกล่าวนี้ย่อมแสดงว่าความพยายามในการนำเอาเศษกระดาษกลับมารีไซเคิลของประเทศไทยจะสามารถการนำเข้าของเศษกระดาษได้ ทั้งยังช่วยลดการใช้ทรัพยากรป่าไม้ ลดปริมาณมูลฝอย ลดการใช้พลังงานไฟฟ้า รวมถึงค่าใช้จ่ายในกระบวนการผลิต 7.2.2 บรรจุภัณฑ์ที่ผลิตจากพลาสติก เริ่มตั้งแต่ปี ค.ศ. 1835 เป็นต้นมา พลาสติกได้รับการค้นพบด้วยวิธีการผลิตเชิงพาณิชย์ ในปัจจุบันนี้วัสดุพลาสติกมีใช้ในวงการบรรจุภัณฑ์ประมาณร้อยละ 30 - 40 โดยมีปริมาณการใช้ คือร้อยละ 50 ใช้ในอุตสาหกรรมพลาสติกอ่อนตัว (Flexible Packaging) อีกร้อยละ 40 ใช้ในบรรจุภัณฑ์เป่าเป็นขวด ส่วนที่เหลือใช้เป็นกาวหรือสารยึดติด พลาสติกที่นิยมใช้ในอุตสาหกรรมบรรจุภัณฑ์ได้แก่ PE PP PS PVC และ PET ในประเทศแถบยุโรป บรรจุภัณฑ์พลาสติกที่พบในกองขยะตามบ้านปรากฏว่ามีประเภทของบรรจุภัณฑ์พลาสติกแยกได้ดังนี้ ตารางที่ 7.5 ปริมาณบรรจุภัณฑ์พลาสติกที่พบในขยะตามบ้านของประเทศแถบยุโรป ประเภทพลาสติก ปริมาณที่พบในขยะ (ร้อยละ) PE + PP 65 PS + EPS 15 PVC 10 PET 5 อื่นๆ 5 แหล่งที่มา : Michaeli, Greif, Kanfmann, Vosseburger, 1992 พลาสติกแต่ละประเภทมีคุณสมบัติแตกต่างกันและจำต้องเลือกใช้ให้เหมาะสมกับสินค้า ในแง่ของการรณรงค์รักษาสิ่งแวดล้อม พลาสติกแต่ละประเภทมีบทบาทต่อสิ่งแวดล้อมดังต่อไปนี้ PET มีคุณสมบัติทนความร้อนได้ในระดับหนึ่ง แต่ทนต่อการกระแทกได้ดีและมีความแวววาว คุณสมบัติเด่นอีกประการหนึ่งคือ ทนต่อการซึมผ่านของก๊าซได้เป็นอย่างดี ทำให้ขวด PET เป็นบรรจุภัณฑ์ชนิดเดียวกับที่ใช้น้ำอัดลมได้ ด้วยคุณสมบัติเด่นดังกล่าวจึงได้รับการยอมรับใช้งานอย่างกว้างขวางในการบรรจุเครื่องดื่มประเภทต่างๆและเครื่องชูรสอาหารอื่นๆ เฉพาะในสหรัฐอเมริกามีปริมาณการใช้ขวด PET ถึง 1.6 พันล้านปอนด์ต่อปี ขวด PET ที่ใช้แล้วสามารถแปรรูปเป็นวัตถุดิบ ในการผลิตเป็นพรม เสื้อผ้า และตุ๊กตา เป็นต้น และเป็นพลาสติกที่มีการนำกลับมาผลิตใหม่มากที่สุด ในเมืองไทยเริ่มมีการนำขวด PET ที่ใช้แล้วมารีไซเคิลเป็นพรมตั้งแต่ปี พ.ศ. 2531 โดยใช้เทคโนโลยีจากญี่ปุ่น ซึ่งมีความสามารถรองรับขวด PET ที่บดละเอียดแล้ว 400 ตันต่อเดือนและสามารถทอเป็นพรมได้ 1,000,000 ตารางเมตรต่อเดือน ความสามารถในการนำขวด PET กลับมาผลิตใหม่เป็นพรมนั้นจะใช้ขวด PET จำนวน 7 - 8 ขวด (ขึ้นกับขนาดของขวด) มาทอเป็นพรมได้ 1 ตารางเมตร โดยรับซื้อจากแหล่งต่างๆ 15 แห่งทั่วทั้งราชอาณาจักร นับว่าเป็นความก้าวหน้าทางเทคโนโลยีรีไซเคิล ซึ่งมีเพียงไม่กี่ประเทศในโลกนี้ที่สามารถนำ PET มาผลิตเป็นสินค้าอย่างอื่น PVC เป็นพลาสติกที่ได้รับความนิยมลดลงมาเรื่อย สืบเนื่องจากมีสารตกค้างของ Vinyl Chloride แม้ว่าจะมีจำนวนน้อยจนไม่เป็นอันตรายต่อสุขภาพก็ตาม การใช้ PVC ในวงการบรรจุภัณฑ์อาจแยกเป็นร้อยละ 60 ใช้กับอาหารและยา และร้อยละ 40 ใช้ในบรรจุภัณฑ์สำหรับอุตสาหกรรมอื่นๆ การนำพลาสติกกลับมาผลิตใหม่นี้คงจะได้รับการรณรงค์ส่งเสริมมากขึ้นเรื่อยๆ พร้อมทั้งควรจะมีกฎข้อบังคับให้ระวังรักษาความปลอดภัยในการนำพลาสติกกลับมาผลิตหรือใช้ใหม่โดยเฉพาะอย่างยิ่งการนำกลับมาบรรจุอาหารนั้นมีความเสี่ยงสูงมาก ในปัจจุบันประเทศสหรัฐอเมริกาได้มีการนำบรรจุภัณฑ์พลาสติกกลับมาผลิตใหม่ดังนี้ ตารางที่ 7.6 บรรจุภัณฑ์พลาสติกที่นำกลับมาผลิตใหม่จากขยะตามบ้านในสหรัฐอเมริกา ประเภทของบรรจุภัณฑ์ การนำกลับมาผลิตใหม่ (ร้อยละ) ขวดน้ำดื่ม 65 ขวดน้ำยาทำความสะอาด 50 ขวดประเภทอื่นๆ 10 ฟิล์มบรรจุภัณฑ์ 5 เฉลี่ยพลาสติกชนิดต่างๆ 30 แหล่งที่มา : R.G. Saba and W.E. Pearson "Curbside Recycling Infrastructure : A Pragmatic Approach" American Chemical Society Washington D.C. (1995) 7.2.3 บรรจุภัณฑ์ที่ผลิตจากโลหะ บรรจุภัณฑ์โลหะโดยเฉพาะกระป๋องได้รับความนิยมใช้อย่างกว้างขวางตั้งแต่โบราณกาล บรรจุภัณฑ์โลหะที่เป็นเหล็กได้วิวัฒนาการมาใช้อะลูมิเนียมทั้งในรูปแบบกระป๋อง และเปลวอะลูมิเนียมที่นำมาผลิตเป็นวัสดุบรรจุภัณฑ์อ่อนนุ่ม (1) กระป๋องเหล็ก ปัญหาการเก็บมาผลิตใหม่ของบรรจุภัณฑ์กระป๋อง คือ สารที่ใช้เคลือบภายในกระป๋อง ซึ่งได้มีการรณรงค์การทำให้หลอมละลายด้วยความร้อนได้ง่าย และต้องทำการแยกสารที่ใช้เคลือบนี้ในเตาหลอมแยกต่างหากก่อน ข้อดีของกระป๋องออกมาได้ สำหรับกระป๋อง 3 ชิ้นแบบเก่าที่ใช้น้ำประสานทองในการเชื่อมตัวกระป๋องเข้าด้วยกันและกระป๋องที่มีเนื้อดีบุกผสมอยู่ การนำกลับมาใช้ผลิตใหม่ต้องแยกเอาดีบุกและโลหะหนักออกมาก่อนแม้ว่าจะมีปริมาณเพียงร้อยละ 0.01 เพราะสารที่ตกค้างอยู่นี้จะก่อให้เกิดปัญหาในการรีดเหล็กเมื่อนำเหล็กไปหลอมใหม่ (2) กระป๋องอะลูมิเนียม บรรจุภัณฑ์อะลูมิเนียมที่ได้รับความนิยมมากในปัจจุบันนี้คือ กระป๋องอะลูมิเนียมบรรจุน้ำอัดลมและเครื่องดื่มประเภทต่างๆ นอกเหนือจากเปลวอะลูมิเนียมที่ใช้ในบรรจุภัณฑ์อ่อนนุ่ม สืบเนื่องจากบรรจุภัณฑ์อะลูมิเนียมที่ผลิตจากอะลูมิเนียมที่มีความบริสุทธิ์ถึงร้อยละ 99 โอกาสที่จะนำบรรจุภัณฑ์อะลูมิเนียมกลับมาใช้ใหม่จึงให้ผลตอบแทนทางด้านเศรษฐกิจสูง แม้ว่าแหล่งทรัพยากรธรรมชาติที่นำมาผลิตเป็นอะลูมิเนียมนั้น เชื่อกันว่ามีอยู่ในโลกนี้มากเป็นอันดับสามก็ตาม แต่แร่ที่ใช้กันมากที่สุด คือ Bauxite 4 กิโลกรัมสามารถผลิตเป็นเปลวอะลูมิเนียมได้เพียง 1 กิโลกรัมเท่านั้น กระป๋องอะลูมิเนียมที่ใช้ในอุตสาหกรรมน้ำอัดลมในประเทศที่พัฒนาแล้ว มีการนำกลับมาผลิตใหม่ร้อยละ 95 และอะลูมิเนียมที่ได้จากการนำกลับมาผลิตใหม่นี้กว่าร้อยละ 90 จะนำมาผลิตเป็นกระป๋อง ส่วนที่เหลืออีกประมาณร้อยละ 10 ใช้ผลิตเป็นสินค้าอะลูมิเนียมชนิดอื่นๆ ในกระบวนการนำบรรจุภัณฑ์อะลูมิเนียมกลับมาผลิตใหม่นั้น โดยทั่วไปจะใช้หลักความแตกต่างของความหนาแน่นของบรรจุภัณฑ์กระป๋องอะลูมิเนียมเป็นมาตรฐานในการแยกออกจากกองขยะหรือบรรจุภัณฑ์ประเภทอื่นๆ หรือใช้ระบบกระแสไฟฟ้าที่เรียกว่า Eddy Current โดยการสร้างสนามไฟฟ้า ทำการผลักเอากระป๋องอะลูมิเนียมออกจากกองขยะ ด้วยเหตุนี้ การนำอะลูมิเนียมกลับมาหลอมเหลวใหม่ จะสามารถประหยัดพลังงานจากการนำกระป๋องอะลูมิเนียมกลับมาผลิตใหม่ได้มากกว่าประเทศทางยุโรป 7.2.4 บรรจุภัณฑ์ที่ผลิตจากแก้ว บรรจุภัณฑ์แก้วนับเป็นบรรจุภัณฑ์ชนิดเดียวที่สามารถผลิตได้ครบกระบวนการผลิตภายในโรงงานเดียวกัน ส่งผลให้เศษแก้วที่ได้จากการผลิตสามารถนำกลับมาใช้ใหม่ภายในโรงงานได้อีก นอกจากนี้ ความจำเป็นในการผลิตที่ต้องใช้เศษแก้วผสมในเตาหลอมแก้วทำให้มีความจำเป็นต้องนำขวดแก้วที่ใช้แล้วกลับเข้าสู่โรงงานผลิตแก้ว ทำให้มีการนำแก้วกลับคืนจากผู้บริโภคร้อยละ 25 ของเศษแก้วที่ต้องใช้ในโรงแก้ว การนำขวดแก้วกลับมาหลอมละลายใช้ใหม่จำเป็นต้องมีการแยกสีของขวดก่อน นอกเหนือจากการนำมาผลิตใหม่แล้ว บรรจุภัณฑ์แก้วยังมีการนำกลับมาใช้ใหม่มากที่สุดในจำนวนบรรจุภัณฑ์ทั้งหลาย ตัวอย่างเช่น ขวดน้ำอัดลมสมัยเก่า หรือขวด Return Bottle เคยมีการนำกลับมาบรรจุใหม่ได้หลายสิบครั้ง การนำกลับมาบรรจุใหม่นี้ ในประเทศที่พัฒนาแล้ว จำนวนครั้งของขวดเบียร์จะมีการนำกลับมาใช้ใหม่โดยเฉลี่ยประมาณ 8 ครั้ง จากการศึกษาในประเทศสวีเดน พบว่าถ้ามีการนำขวดแก้วกลับมาใช้ได้ถึง 50 ครั้งจะสามารถลดพลังงานที่ใช้ในการผลิตแก้วใหม่ได้ถึงร้อยละ 50 นอกเหนือจากการเปรียบเทียบพลังงานที่ใช้ในการผลิตแล้ว ยังต้องพิจารณาถึงสุขลักษณะของบรรจุภัณฑ์ที่นำกลับมาใช้ใหม่โดยจำเป็นต้องผ่านการทำความสะอาดอย่างถูกต้อง ในประเทศไทยมีการนำขวดแก้วกลับมาใช้ใหม่ คิดเป็นปริมาณได้ 155,916.60 ตัน หรือประมาณร้อยละ 23 ของขวดแก้วที่ผลิต และเป็นสิ่งที่น่ายินดีอย่างยิ่ง ในปี พ.ศ. 2536 บริษัท บางกอกกล๊าส จำกัด ได้ริเริ่มโครงการรณรงค์หมุนเวียนการใช้เศษแก้วในโรงเรียนต่างๆ โดยมีการนำเศษแก้วหรือขวดแก้วที่เหลือใช้จากครัวเรือน โดยแยกออกจากขยะและรวบรวมนำมาทิ้งในถังเก็บเศษแก้วที่โรงเรียน ผลปรากฏว่ามีโรงเรียนเข้าร่วมโครงการนี้เกือบ 200 โรงเรียน และสามารถนำกลับมาผลิตใหม่ได้มากถึง 1,000 ตันในปี 2540 จากอดีตที่ผ่านมา 30 ปี กระบวนการผลิตบรรจุภัณฑ์แก้วได้วิวัฒนาการอย่างมากมาย ทำให้ได้บรรจุภัณฑ์แก้วที่บางลงแต่แข็งแรงเท่าๆ กับบรรจุภัณฑ์แก้วในอดีต ส่งผลให้พลังงานที่ใช้ลดลง นอกจากนี้ เศษแก้วที่นำกลับมายังสามารถนำไปใช้กับอุตสาหกรรมอื่น เช่น การผลิตอิฐแก้ว การผลิตใยสังเคราะห์ เป็นต้น <<ย้อนกลับ บรรจุภัณฑ์รักษ์สิ่งแวดล้อม ตอนที่1อ่านต่อ บรรจุภัณฑ์รักษ์สิ่งแวดล้อม ตอนที่3 >> <<กลับสู่หน้าหลัก