อันตรายจากสภาวะภูมิอากาศไม่เพียงแต่สร้างอันตรายให้แก่ผลิตภัณฑ์อาหารเท่านั้น ยังมีผลกระทบต่อบรรจุภัณฑ์ด้วย โดยทำให้ความสามารถในการป้องกันรักษาคุณภาพของอาหารบรรจุภัณฑ์ลดน้อยลง ส่งผลให้ท้ายที่สุดผลิตภัณฑ์อาหารภายในบรรจุภัณฑ์เสื่อมคุณภาพได้เร็วขึ้น
3.2.3 สภาวะอันตรายจากปฏิกิริยาทางด้านชีวภาพ
การสูญเสียอันเนื่องมาจากปฏิกิริยาทางชีวภาพนั้น เกิดจากจุลชีวะและสิ่งมีชีวิต อันได้แก่ บักเตรี (bacteria) เชื้อรา (mold) แมลงและหนู รายละเอียดของอันตรายดังกล่าวได้รวบรวมอยู่ในตารางที่ 3.5 แบคทีเรีย (bacteria) เป็นสาเหตุที่ทำให้อาหารเน่าเสีย (food spoilage) ได้มากที่สุด โดยเฉพาะอาหารที่มีความชื้นสูงและ pH ที่เป็นกลาง แบคทีเรียบางชนิดยังทำให้อาหารเป็นพิษด้วย เช่น ซาลโมเลลลา (Salmonella) ซึ่งสามารถเจริญเติบโตได้ในที่ไม่มีออกซิเจนและในอาหารที่มีความเป็นกรดต่ำ แต่โชคดีที่เชื้อนี้สามารถทำลายได้ด้วยความร้อนระดับพลาสเจอร์ไรส์ (pastuerization) เป็นต้น ส่วนเชื้อรานั้นสามารถเจริญเติบโตได้ในอาหารหลายชนิดและหลากหลายกว่าแบคทีเรีย อาหารที่เสื่อมเสียจากเชื้อราส่วนใหญ่มักเก็บไว้ในที่ค่อนข้างมืด สารพิษจากเชื้อราเรียกว่า ไมโคทอกซิน (Mycotoxin) ที่รู้จักกันดี คือ อะฟลาทอกซิน (Aflatoxin) ซึ่งพบมากในถั่วเหลืองและผลิตภัณฑ์เกษตรอื่นๆ
ตารางที่ 3.5 อันตรายทางชีวภาพของการจัดจำหน่าย
สาเหตุ | สภาวะอันตราย |
โดยทั่วไป เชื้อราและแบคทีเรียจะไม่เจริญเติบโตในความชื้นสัมพัทธ์ต่ำกว่า 70% RH | |
ข. พวกแมลงต่างๆ ผึ้ง มด ปลวก | โดยทั่วไป พวกแมลงต่างๆ จะเจริญเติบโตได้ดีในอุณหภูมิสูงและมีความชื้นสัมพัทธ์ 70% RH อย่างไรก็ตามก็มีแมลงบางชนิดสามารถเจริญเติบโตได้ในความชื้นสัมพัทธ์ 50% RH แต่ไม่เจริญเติบโตในอุณหภูมิต่ำกว่า 15°C การเจริญเติบโตจะเริ่มต้นตั้งแต่การวางไข่ในวัสดุบรรจุภัณฑ์จนฟักเป็นตัว |
ค. มอด | แมลงชนิดนี้จะไม่ทนต่อสภาพอากาศที่แห้ง |
ง. หนู | ส่วนมากพบในโกดังสินค้า , ที่ร่ม |
ปัจจัยที่มีผลต่อการเจริญและการตายของจุลินทรีย์มีดังนี้ คือ
- สารอาหาร
- น้ำ
- อุณหภูมิ
- ออกซิเจน (หรือคาร์บอนไดออกไซด์ ในบางกรณี)
- pH (หรือความเป็นกรด)
- สารกันบูด (Preservatives)
- ผลกระทบของจุลินทรีย์ที่มีต่อกัน (Micorbial interaction)
1. สารอาหาร
การควบคุมอาหารของจุลินทรีย์ทำได้โดยการทำความสะอาดเครื่องมืออุปกรณ์ให้สะอาดที่สุดด้วยวิธีนี้โอกาสที่จุลินทรีย์จะสะสมเจริญเติบโตในบริเวณที่ผลิตก็จะลดลง
2. น้ำ
จุลินทรีย์ต้องการน้ำในการเจริญเติบโต หากน้ำในอาหารลดน้อยลงเรื่อยๆ ก็จะถึงจุดหนึ่งที่จุลินทรีย์ในอาหารนั้นหยุดการเจริญเติบโต เมื่อกล่าวถึงน้ำในอาหารนี้ก็จะต้องเป็นน้ำที่จุลินทรีย์นำไปใช้ประโยชน์ได้ นั่นคือจะต้องไม่เป็นน้ำที่มีพันธะ หรือ "Bound Water" ซึ่งถูกดึงไว้ในรูปโมเลกุลใหญ่ ตัวอย่างน้ำที่มีพันธะ ได้แก่ น้ำที่มีพันธะแฝงอยู่กับน้ำตาลในสารละลายน้ำเชื่อม เป็นต้น เราจึงเห็นได้ว่า น้ำเชื่อมเข้มข้นนั้นประกอบด้วยน้ำเป็นจำนวนมากแต่น้ำเชื่อมเข้มข้นนี้ส่วนมากอยู่ในรูป "Bound" ดังนั้นจุลินทรีย์จะไม่สามารถเจริญได้
(ดูwater activity, moisture contentด้วย)
3. อุณหภูมิ
ปัจจัยสำคัญที่จะควบคุมจุลินทรีย์ก็อยู่ที่อุณหภูมินี่เอง เมื่อลดอุณหภูมิลงเรื่อยๆ การเจริญของจุลินทรีย์ก็จะลดลงจนถึงหยุดเจริญ อย่างไรก็ตามการแช่แข็งไม่ได้ทำลายจุลินทรีย์แต่จะพียงหยุดการเจริญเท่านั้น เมื่อน้ำแข็งละลายแล้วอาหารมีอุณหภูมิสูงขึ้นจุลินทรีย์ก็จะกลับมาเจริญได้อีก การลดอุณหภูมิของอาหารลงไม่ต่ำเพียงพอเป็นสาเหตุของโรคอาหารเป็นพิษ (food poisoning) จำนวนมาก การฆ่าเชื้อจุลินทรีย์ที่อุณหภูมิสูงจะใช้เวลาสั้นกว่าที่อุณหภูมิต่ำ
แบคทีเรียสามารถแบ่งตามระดับอุณหภูมิที่เจริญเติบโตได้ดังนี้
- ไซโครไฟล์ (Psychrophile) พวกนี้เจริญได้ในที่อุณหภูมิต่ำ -5 °C ถึง 5 °C
- ไซโครโทรป (Psychrotroph) เจริญได้ที่ -5 °C และเจริญได้ดีที่ 20 °C - 30
- เมโซไฟล์ (Mesophile) เจริญที่ 35 °C ซึ่งใกล้เคียงกับอุณหภูมิร่างกาย แบคทีเรียที่ก่อให้เกิดโรคส่วนใหญ่อยู่ในกลุ่มนี้
- เทอร์โมไฟล์ (Thermophile) คือ พวกที่เจริญได้ที่อุณหภูมิสูงกว่า 45 °C ถึง 66 °C พวกนี้มักเป็นกลุ่มที่ทำให้อาหารเน่าเสีย (food spoilage) แต่ไม่เป็นจุลินทรีย์ที่ทำให้เกิดโรค (pathogen) การเก็บอาหารที่อุ่นร้อนเสมอจึงต้องอุ่นไว้ที่อุณหภูมิสูงกว่าที่กลุ่มนี้จะเจริญเติบโต คือที่ 77 °C ขึ้นไป สำหรับอาหารกระป๋องต้องรีบทำให้เย็นลงหลังฆ่าเชื้อต่ำกว่า 41 °C เพื่อป้องกันการเจริญของสปอร์ (bacterial spore) ของพวกเทอร์โมไฟล์นี้
4. ออกซิเจน (หรือคาร์บอนไดออกไซด์)
จุลินทรีย์จำนวนมากต้องการออกซิเจนในการเจริญ ดังนั้นการจำกัดปริมาณออกซิเจนในบริเวณผิวอาหาร เช่น การบรรจุในถุงสุญญากาศ หรือ การแทนที่อากาศด้วยคาร์บอนไดออกไซด์ก็จะสามารถลดการเจริญของทั้งจุลินทรีย์ที่ทำให้เกิดโรคและที่ทำให้อาหารเสื่อมเสียได้ อย่างไรก็ตามจุลินทรีย์บางชนิดเจริญในที่ที่ปราศจากออกซิเจน เช่น Clostridium Botulinum ซึ่งเป็นจุลินทรีย์ที่เป็นปัญหาสำคัญของอาหารกระป๋อง
5. pH (หรือความเป็นกรด)
ในการผลิตอาหารมักมีการเติมกรดเพื่อปรับปรุงรสชาติหรือลักษณะเนื้อ ซึ่งในขณะเดียวกันก็จะทำให้มีผลลดการเจริญของจุลินทรีย์ pH ระหว่าง 0 ถึง 7 จัดว่าเป็นกรดสูง ในขณะที่ pH 7 ถึง 14 จัดว่าเป็นด่างหรือมีความเป็นกรดต่ำ และเป็นที่เข้าใจกันดีว่า ไม่มีจุลินทรีย์ชนิดใดเจริญเติบโตได้ที่ pH ต่ำกว่า 4.6 ดังนั้น การทำให้อาหารเป็นกรดจึงเป็นวิธีหนึ่งในการลดความเสี่ยงของ อาหารเป็นพิษ
6. สารกันบูด (Preservatives)
การใช้สารกันบูดอย่างเหมาะสมช่วยลดและควบคุมการเจริญของจุลินทรีย์บางตัวได้ดี เช่น การใช้เบนโซเอท หรือซอร์เบท ในน้ำผลไม้ การใช้ไนไตรท์ในเบคอน อย่างไรก็ตาม การใช้สารเคมีเช่นนี้จะต้องใช้ในปริมาณที่เพียงพอเท่าที่จำเป็นจะทำให้ได้ผลเท่านั้น การใช้มากเกินไปจะเป็นอันตราย
7. ผลกระทบของจุลินทรีย์ที่มีต่อกัน (Microbial Interaction)
การจัดการสภาวะให้เหมาะสมกับการเจริญของจุลินทรีย์ตัวหนึ่งอาจมีผลทำให้ลดการเจริญของอีกตัวหนึ่งได้ เช่น การใส่เกลือในการทำอาหารดองเปรี้ยวจะช่วยให้ Lactic Acid Bacteria เจริญและสร้างกรดแลกติกเป็นผลให้ pH ของอาหารลดต่ำลงจนไม่เหมาะสมที่จุลินทรีย์อื่นจะเจริญได้
รูปที่ 3.7 ผลของอุณหภูมิที่มีผลต่อการเจริญและตายของจุลินทรีย์ (แบคทีเรีย)
อันตรายที่เกิดจากสิ่งมีชีวิตเช่น หนู อาจป้องกันได้ด้วยการรักษาสภาวะการเก็บให้สะอาดถูกสุขลักษณะ ส่วนการป้องกันอันตรายจากแบคทีเรียและเชื้อรานั้น จำต้องควบคุมความชื้นภายในบรรจุภัณฑ์ ในบางกรณีอาจใช้สารดูดความชื้นภายในบรรจุภัณฑ์หรือการปรับสภาพภายในบรรจุภัณฑ์ด้วยก๊าซเฉื่อย (Modified Atmosphere Packaging) เป็นต้น
ส่วนอันตรายที่เกิดจากเชื้อรานั้นเป็นปรากฏการณ์ที่เกิดขึ้นบ่อยมากในประเทศเขตร้อน พลาสติกแต่ละประเภทจะทนต่อการเจาะผ่านของแมลงแตกต่างกัน ข้อมูลที่รวบรวมไว้ในตารางที่ 3.6 แสดงว่าถุง PET จะทนต่อการเจาะผ่านของแมลงนานที่สุด โดยใช้เวลาเฉลี่ยประมาณ 6 สัดาห์โดยที่พลาสติกอื่นๆ ใช้เวลา 3-4 สัปดาห์เท่านั้น
ตารางที่ 3.6 อัตราการเจาะผ่านวัสดุบรรจุภัณฑ์ของแมลง
วัสดุบรรจุภัณฑ์ | ความหนา (มิลลิเมตร) | เวลาโดยเฉลี่ยก่อนการเจาะผ่าน (สัปดาห์) |
Cellulose Film | 0.023 0.036 0.041 | 3 3 3.5 |
Polyethylene Film | 0.038 0.050 0.100 | 3 3 3 |
PVC/PVDC Copolymer Film | 0.038 0.050 | 3 4 |
0.025 | 6 |
แหล่งที่มา : Paine, F.A. "Fundamentals of Packaging" p.60
3.2.4 สภาวะอันตรายอื่นๆ
นอกเหนือจากสภาวะอันตรายต่างๆ ดังกล่าวแล้วยังมีอันตรายอื่นๆ ที่เกิดขึ้นได้สรุปไว้ในตารางที่ 3.7
ตารางที่ 3.7 อันตรายจากการปนเปื้อน
ก. ปนเปื้อนจากบรรจุภัณฑ์ที่อยู่ข้างๆ | ส่งผลให้รายละเอียดที่พิมพ์บนบรรจุภัณฑ์เลอะเลือนไปการปนเปื้อนจากวัสดุที่เปียกและสกปรก |
ข. การรั่วซึมจากสินค้าที่อยู่ใกล้เคียง | สินค้าที่เป็นของเหลว , ก๊าซ รั่วซึมมาปนเปื้อนทำให้ผิวบรรจุภัณฑ์เสียหายหรือสินค้าใช้งานไม่ได้ |
ค. การแผ่รังสี | การแผ่กัมมันตรังสีของสินค้าที่ขนส่งไปด้วยกัน |
3.3 ระบบการขนส่ง
บรรจุภัณฑ์อาหารมีบทบาทในการนำผลิตภัณฑ์อาหารจากแหล่งผลิตไปยังแหล่งบริโภค การศึกษาถึงสภาวะการขนส่งในแต่ละประเภท ย่อมมีความจำเป็นต่อการออกแบบบรรจุภัณฑ์ซึ่งทำหน้าที่ปกป้องอันตรายในระหว่างการขนส่งได้อย่างสมบูรณ์
(1) การเลือกระบบการขนส่ง
หน้าที่สำคัญอย่างหนึ่งของบรรจุภัณฑ์ คือการกระจายสินค้าไปยังที่ต่างๆ ด้วยการใช้ระบบการขนส่งที่เหมาะสม การกระจายสินค้ามีได้หลายรูปแบบและสลับซับซ้อนแตกต่างกัน แต่ด้วยจุดมุ่งหมายเดียวกัน คือ การนำส่งบรรจุภัณฑ์พร้อมสินค้าจากสถานที่หนึ่งไปยังอีกสถานที่หนึ่ง การเลือกระบบการขนส่งอาจเลือกได้หลายระบบแล้วแต่ละสถานะของสินค้าที่จะส่งและความสะดวกของระบบการขนส่งแต่ละประเภท
หลักการในการเลือกระบบการขนส่ง อาจประกอบด้วย
1. ความรีบด่วนของการจัดส่ง
2. ปริมาณ (น้ำหนัก หรือปริมาตร) ที่สามารถจัดส่งในแต่ละเที่ยว
3. ความสามารถในการจัดส่งโดยตรง โดยไม่มีการขนถ่ายระหว่างทาง (Trans-shipment)
4. ค่าใช้จ่ายเกี่ยวข้องกับการขนส่ง
5. กฎหมายที่เกี่ยวข้อง
6. ต้นทุนของสินค้าที่บรรจุใส่ในบรรจุภัณฑ์
ไม่ว่าจะพิจารณาจากองค์ประกอบใดทั้ง 6 ข้อ สิ่งที่พึงสังวรคือ บรรจุภัณฑ์ที่ใช้นั้นจำต้องปกป้องสินค้าจากอันตรายที่เกิดระหว่างการขนส่ง หรือสามารถเสริมให้เกิดความสะดวกในการจัดส่งและขนย้าย เนื้อหาต่อไปนี้จะได้กล่าวถึงรายละเอียดของระบบการขนส่ง 5 ประเภทที่นิยมใช้ในปัจจุบันนี้
1. การขนส่งทางรถยนต์
การขนส่งทางรถยนต์เป็นวิธีการขนส่งที่ได้รับความนิยมมากที่สุดในขณะนี้ เนื่องจากสามารถทำการจัดส่งได้สะดวกแบบระบบจากประตูถึงประตู และเป็นการขนส่งที่มีค่าใช้จ่ายน้อย เนื่องจากมีการเก็บค่าผ่านทางน้อย พร้อมทั้งเส้นทางถนนสามารถครอบคลุมได้กว้างขวางมาก ด้วยความก้าวหน้าทางการขนส่ง ในปัจจุบันรถยนต์สามารถข้ามน้ำข้ามทะเลด้วยการขึ้นขับไปบนเรือได้เลย อย่างไรก็ตาม การขนส่งทางรถยนต์ก็ถูกจำกัดด้วยปริมาณของสินค้าที่จะขนส่งต่อครั้ง ไม่ว่าจะเป็นในรูปของน้ำหนักหรือปริมาตรสินค้า
ในประเทศที่พัฒนาแล้วมักจะมีมาตรฐานของบรรจุภัณฑ์ที่จะใช้สำหรับสินค้าต่างชนิดกัน ตัวอย่างเช่น กฎ Item 222 ในสหรัฐอเมริกาที่กำหนดมาตรฐานของบรรจุภัณฑ์ National Motor Freight Classification กฎนี้จะกำหนดคุณลักษณะของบรรจุภัณฑ์ขั้นพื้นฐานที่จะสามารถปกป้องสินค้าระหว่างการขนส่งพร้อมทั้งใช้เป็นเกณฑ์ในการ Claim สำหรับการประกันสินค้าเมื่อมีการแตกหักระหว่างการขนส่ง
กล่าวโดยสรุปแล้ว การขนส่งทางรถยนต์มีเครือข่ายกว้างขวาง มีค่าใช้จ่ายต่ำโดยที่ผู้ประกอบธุรกิจสามารถลงทุนพาหนะเองได้ พร้อมทั้งมีความปลอดภัย ยกเว้นว่าจะมีความแปรปรวนในสภาวะดินฟ้าอากาศตามฤดูกาล
2. การขนส่งทางรถไฟ
การขนส่งทางรถไฟในประเทศไทยมักจะได้รับความนิยมน้อยลง เนื่องจากการแข่งขันจาก
ระบบการขนส่งรถยนต์ อย่างไรก็ตาม การขนส่งทางรถไฟได้รับการยอมรับว่ามีความเร็วสูง ถ้าสถานที่ส่งและจุดหมายปลายทางต่างๆ มีรางรถไฟไปถึง การขนส่งทางรถไฟมักจะต้องพึ่งวิธีการขนส่งประเภทอื่นๆ เช่น การขนส่งทางรถยนต์ ด้วยเหตุนี้จึงอาจมีการเสียเวลาด้วยการขนถ่ายสินค้าจากระบบการขนส่งหนึ่งไปอีกระบบหนึ่ง อย่างไรก็ตาม การขนส่งทางรถไฟนั้นเหมาะสำหรับการขนส่งสินค้ามวลมาก (Bulk material) เช่น น้ำมัน แร่ เป็นต้น แต่สินค้าเหล่านี้เมื่อใช้การขนส่งทางรถไฟแล้ว มักจะไม่ต้องใช้บรรจุภัณฑ์ใด
ปริมาณของสินค้าที่จะใช้ขนส่งนั้นจะแปรผันตามความยาวของโบกี้ตู้สินค้าและน้ำหนักที่จะได้รับ ด้วยเหตุนี้ ในบางประเทศ เช่น สหรัฐอเมริกา จึงมีการกำหนดคุณภาพของบรรจุภัณฑ์ที่จะใช้ขนส่งทางรถไฟโดยเรียกว่า Uniform Freight Classification หรือรู้จักกันในชื่อของ Rule 41 คล้ายคลึงกัน Item 222 ของการขนส่งทางรถยนต์
3. การขนส่งทางน้ำภายในประเทศ
ระบบการขนส่งทางน้ำมีองค์ประกอบแปรผันหลายองค์ประกอบ ยกตัวอย่างเช่น ระดับน้ำของแม่น้ำ ขนาด และท่าเรือที่มี แม้ว่าการขนส่งทางเรือนี้อาจจะมีความเร็วช้า และมีอุปสรรคในการขนส่ง เช่น มีโขดหิน ตอ เป็นต้น แต่ทว่าไม่ค่อยจะมีกฎเกณฑ์บังคับเหมือนกับระบบการขนส่งอื่นๆ
4. การขนส่งทางทะเล
การขนส่งทางทะเลนี้เหมาะสำหรับการขนส่งสินค้าระหว่างประเทศเกือบทุกประเภทที่ไม่ต้องการความเร็วในการขนส่ง พาหนะที่ใช้ในการขนส่งทางทะเลมีหลายรูปแบบ มีพาหนะที่ใช้ขนส่งเฉพาะสินค้า เช่น น้ำมัน เมล็ดพืช เป็นต้น อย่างไรก็ตาม การขนส่งทางทะเลได้รับความนิยมมากขึ้นจากการใช้คอนเทนเนอร์มาเป็นพาหนะ เนื่องจากสามารถลดอันตรายในการขนส่งและการขโมยที่อาจเกิดขึ้น ลดการขนถ่ายระหว่างทาง เพิ่มประสิทธิภาพในการขนย้ายโดยใช้เครื่องมืออัตโนมัติ
ข้อจำกัดของการขนส่งทางเรือ คือ ท่าเรือที่มีอยู่ และวิธีการขนถ่ายของแต่ละท่าเรือการใช้บริการขนส่งทางทะเลนั้น มักใช้บริการของผู้ประกอบการขนส่ง เช่น ผู้ประกอบการที่รวมกนเป็นกลุ่ม "Conference" ที่คิดค่าระวางเป็นราคาที่แน่นอน แต่อาจแปรผันตามปริมาณที่ขนส่งและมูลค่าของสินค้า สำหรับการขนส่งทางทะเลที่เป็นส่วนหนึ่งของธุรกิจข้ามชาติ จะมีกฎหมายระหว่างประเทศควบคุมอยู่
5. การขนส่งทางอากาศ
การขนส่งทางอากาศนี้นับเป็นวิธีการขนส่งที่เร็วที่สุด แม้ว่าจะต้องพึ่งวิธีการขนส่งแบบอื่นให้ส่งถึงปลายทางสุดท้าย อย่างไรก็ตาม ความล่าช้าในการขนถ่ายอาจลดลงได้ ถ้าใช้เครื่องมือสมัยใหม่เข้าช่วยเนื่องจากการขนส่งทางอากาศนี้ใช้ตู้คอนเทนเนอร์ที่มีขนาดแน่นอน ทำให้การขนส่งเป็นไปอย่างสะดวก กฎข้อบังคับที่ใช้ในการขนส่งและบรรจุภัณฑ์ที่ใช้จะถูกควบคุมโดย International Air Transport Association (IATA)
การขนส่งทางอากาศนี้ นับเป็นการขนส่งที่มีค่าใช้จ่ายสูง ดังนั้นจึงเหมาะกับสินค้าที่ต้องการไปถึงจุดหมายปลายทางเร็ว เช่น ผัก ผลไม้สด หรือสินค้าที่มีราคาแพง อันตรายที่จะมีต่อการขนส่งทางอากาศนี้จะคล้ายๆ กับการขนส่งทางทะเล คือ ผลกระทบจากสภาพภูมิอากาศ เช่น หมอก หิมะ เป็นต้น
2) การประเมินระดับอันตรายในการขนส่ง
ตามความรู้ทางด้านฟิสิกส์การเคลื่อนย้ายของสิ่งของใดๆ เมื่อเทียบกับเวลาจะวัดเป็นความเร็วและความเร็วที่เปลี่ยนแปลงต่อหน่วยเวลาจะเป็นความเร่ง บรรจุภัณฑ์ขนส่งด้วยระบบการขนส่งใดๆ จะได้รับทั้งแรงสั่นสะเทือนและการกระแทก การกระแทกที่เกิดขึ้นมักจะมีการเคลื่อนย้ายซึ่งจะวัดเป็นระยะทางมีหน่วยเป็นเซนติเมตรหรืออาจจะเป็นเมตร ความอันตรายที่เกิดจากการกระแทกมีคุณลักษณะที่เกิดขึ้นในช่วงเวลาเป็นเสี้ยวของวินาทีหรือเศษหนึ่งส่วนพันของวินาที (millisecond หรือ ms) เวลาที่ใช้ในการตกกระแทกยิ่งสั้น ความรุนแรงเกิดจากการตกกระแทกนั้นๆ จะยิ่งมาก ความสัมพันธ์ระหว่างเวลากับความรุนแรงของการกระแทกนี้เปรียบเสมือนคล้ายคลึงกับการที่หน้าคนถูกลูบหรือว่าถูกตบ การถูกลูบใช้เวลาสัมผัสต่อผิวด้วยเวลาที่ยาวนานกว่าจึงไม่รุนแรงเท่ากับการถูกตบซึ่งใช้เวลาอันสั้น
ส่วนการสั่นสะเทือนที่เกิดขึ้นเปรียบเสมือนกับการกระแทกแต่เป็นการกระแทกที่มีการเคลื่อนย้ายด้วยระยะทางสั้นๆ มีหน่วยวัดเป็นเพียงแค่มิลลิเมตร แต่เกิดขึ้นบ่อยครั้งมาก อาจวัดได้ถึง 100 ครั้ง หรือ 1,000 ครั้งต่อวินาทีโดยมีหน่วยเป็น Hz เฮิทซ์ (Hertz) ความเร็วที่เกิดขึ้นกับการกระแทกและการสั่นสะเทือนของบรรจุภัณฑ์นี้วัดเป็นหน่วยของ G หรือ g's ซึ่งมีความหมายว่า ความเร่งที่เกิดการกระแทกหรือสั่นสะเทือนนั้นได้วัดเป็นกี่เท่าของความเร่งโน้มถ่วงโลก สมมุติว่าความเร่งที่เกิดขึ้นกับบรรจุภัณฑ์มีค่า 140 เมตร/วินาที/วินาที ค่าของความเร่งนี้เมื่อเทียบกับความเร่งโน้มถ่วงโลกคือ 140/9.8 = 14.3 G (ความเร่งโน้มถ่วงโลกมีค่าเท่ากับ 9.8 เมตร/วินาที/วินาที หรือ 980 เซนติเมตร/วินาที/วินาที) ด้วยเหตุนี้เมื่อไรก็ตามที่กล่าวถึงความรุนแรงในการตกกระแทกหรือการสั่นสะเทือนเป็นค่า G หรือ g's ก็คือ เป็นกี่เท่าเมื่อเทียบกับความเร่งโน้มถ่วงโลก
สรุปความรุนแรงที่อาจเกิดขึ้นจากการใช้ระบบการขนส่งต่างๆ และความสามารถในความทนต่อการกระแทกของสินค้าต่างๆ ดังตารางที่ 3.8 และตารางที่ 3.9
ตารางที่ 3.8 การสั่นสะเทือนที่เกิดระหว่างการขนส่ง
ระบบการขนส่ง | ความถี่ | ค่าสูงสุดของ G | |
ตู้ขบวนรถไฟ | ความถี่ระบบการทรงตัว (Suspension) | 2-7 HZ | ½ g's |
โครงสร้างรถ | 50-70 HZ | ½ g's | |
รถขนสินค้า | ระบบการทรงตัว (Suspension) | 2-7 HZ | ½ g's |
โครงสร้าง | 50-100 HZ | ½ g's | |
เครื่องบิน | ใบพัด | 2-4.6 HZ | ต่ำมาก |
เจ็ต | 100-200 HZ | ต่ำมาก | |
เรือ | คลื่นและเครื่องเรือ | 10-100 HZ | ต่ำมาก |
ตารางที่ 3.9 ค่าความเปราะ (Fragility) ของสินค้าบางประเภท
สินค้า | ค่าของ g's | |
เปราะแตกหักง่ายมาก | เครื่องมือทดสอบ | 15-25 g's |
บอบบางมาก | เครื่องมืออิเล็คทรอนิคส์ | 25-40 g's |
บอบบาง | เครื่องมือไฟฟ้าทั่วๆ ไป | 40-60 g's |
แข็งแรง | โทรทัศน์ | 60-85 g's |
แข็งแรงพอควร | ตู้เย็น | 85-115 g's |
แข็งแรงมาก | เครื่องจักร | 115 g's และมากกว่า |
แหล่งที่มา : Brandenburg, Richard K. and Lee, Julian June-Ling. "Fundamentals of Packaging Dynamics"
<<ย้อนกลับ การพัฒนาโครงสร้างบรรจุภัณฑ์ ตอนที่3อ่านต่อ การพัฒนาโครงสร้างบรรจุภัณฑ์ ตอนที่5 >>