ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก
( Effect of moisture content on some physical properties of sunflower seed and kernel )
สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
เกียรติศักดิ์ งามวิริยะประเสริฐ ณฐกฤช จารุวัฒนาสกุล ณัฐกิตติ์ กิติวงค์ วสันต์ อินทร์ตา
บทคัดย่อ
จากการศึกษาผลของความชื้นต่อสมบัติทางกายภาพของเมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก มีจุดประสงค์เพื่อศึกษาเกี่ยวกับสมบัติด้านต่างๆ ของเมล็ดทานตะวันเมื่อความชื้นมีค่าเปลี่ยนไป โดยเมื่อทำการวัดค่าโดยรวม เมล็ดทานตะวันแบบกะเทาะเปลือกจะมีค่าเฉลี่ยของ ความยาว,ความกว้าง,ความหนา,ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราคณิต,ความเป็นทรงกลม,ความหนาแน่นเนื้อ,ความหนาแน่นรวม,ความพรุน รวมทั้ง พื้นที่ภาพฉาย,ปริมาตรต่อหนึ่งเมล็ด,สัมประสิทธิ์แรงเสียดทานสถิตย์ของผิวไม้ อะลูมิเนียม ยาง และ ความเร็วสุดท้ายที่ความชื้นเริ่มต้น (1.15% wb.) คือ 13.41 mm,5.59 mm,2.37 mm,5.6 mm,0.41,1.177 g/cm3,0.602 g/cm3, 48.88%,0.535cm2,1.575cm3,0.6751 ,0.6236 ,0.8557, 8.27 m/s ตามลำดับและพบว่าเมล็ดทานตะวันแบบไม่กะเทาะเปลือกจะมีค่าเฉลี่ยของค่าความยาว,ความกว้าง,ความหนา,ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราคณิต , ความเป็นทรงกลม ความหนาแน่นเนื้อ ,ความหนาแน่นรวม ความพรุน รวมทั้ง พื้นที่ภาพฉาย,ปริมาตรต่อหนึ่งเมล็ด สัมประสิทธิ์แรงเสียดทานสถิตย์ของ ผิวไม้ อะลูมิเนียม ยาง และ ความเร็วสุดท้ายที่ความชื้นเริ่มต้น (2.25% wb.) คือ 20.39mm,9.41mm, 4.65mm, 9.6mm, 0.474 ,1.575 g/cm3, 0.296g/cm3 , 81.21 %, 1.41cm2,0.073 cm3, 0.625,0.5820.845 ,7.33 m/s ตามลำดับ และทำการเพิ่มความชื้นในระดับต่างๆ ( 4.15 -15.25 % wb. ) ซึ่งจากผลการทดลองพบว่า ความชื้นมีผลต่อการเปลี่ยนแปลงของคุณสมบัติต่างๆที่ได้กล่าวมาโดยมีลักษณะความสัมพันธ์กันเป็นเชิงเส้น โดยจะแปรผันตรงซึ่งกัน เว้นแต่ ความหนาแน่นรวมจะมีลักษณะที่แปรผกผันกับความชื้น
1.บทนำ
ทานตะวัน (sunflower) มีชื่อวิทยาศาสตร์Helianthus annuus L.เป็นพืชน้ำมันที่สำคัญชนิดหนึ่งของโลก นิยมปลูกกันมากในเขตอบอุ่น ทานตะวันมีการปลูกเพื่อใช้บริโภคโดยตรง และใช้สกัดเป็นน้ำมัน เมล็ดทานตะวันมีน้ำมันในเมล็ดอยู่ประมาณ 40% ซึ่งเป็นน้ำมันที่มีคุณค่าทางโภชนาการสูง เนื่องจากมีกรดไขมันไม่อิ่มตัวสูงถึง 88%ซึ่งถือว่าสูงเมื่อเปรียบเทียบกับพืชน้ำมันชนิดอื่น (เสาวรี บำรุง, 2550) ทั้งนี้ยังประกอบไปด้วย โปรตีน ธาตุเหล็ก แคลเซียมฟอสฟอรัส วิตามินเอ ดี อี และเค โดยเฉพาะวิตามินอีที่มีอยู่ในปริมาณสูงในเมล็ดทานตะวันนั้นมีคุณค่าทางโภชนาการสูง คือช่วยบำรุงผิวหนังให้เต่งตึงดูอ่อนวัย ชะลอความแก่ของผิวหนัง ลดการอักเสบ ป้องกันการเกิดการแข็งตัวของเลือด ป้องกันโรคมะเร็ง และโรคหัวใจ ป้องกันการเกิดต้อกระจก สามารถนำไปทำ Lecthinเพื่อใช้ในทางการแพทย์เพื่อช่วยลดไขมันในเส้นเลือด (Cholesterol) เป็นต้น นอกจากนี้กากที่ได้หลังจากการสกัดน้ำมันแล้วสามารถนำไปใช้เป็นอาหารสัตว์ได้เป็นอย่างดีเนื่องจาก มีโปรตีนสูงและย่อยง่าย
ในทางด้านอุตสาหกรรม ทานตะวันยังถูกนำมาใช้เป็นวัตถุดิบในอุตสาหกรรมต่างๆ เช่น ครีมเทียม เนยเทียม เครื่องสำอางน้ำมันชักเงา น้ำมันหล่อลื่น การทำสบู่ อุตสาหกรรมฟอกสีและทำสี และยังสามารถนำมาผลิตเป็นไบโอดีเซลได้อีกด้วย
ดังนั้นทางคณะผู้วิจัยจึงได้ทำการศึกษาคุณสมบัติทางกายภาพของเมล็ดทานตะวัน และศึกษาความสัมพันธ์ระหว่างความชื้นกับคุณสมบัติที่เปลี่ยนไปของ เมล็ดทานตะวันทั้งแบบกะเทาะเปลือก และไม่กะเทาะเปลือก เช่น ความยาว ความกว้าง ความหนา มวลรวม100 เมล็ด ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราคณิต ความเป็นทรงกลม พื้นที่ภาพฉาย ความหนาแน่นรวม ความหนาแน่นเนื้อ ความพรุน ปริมาตรต่อหนึ่งเมล็ด สัมประสิทธิ์แรงเสียดทานสถิตย์ และความเร็วสุดท้าย เพื่อเป็นข้อมูลที่มีประโยชน์ ที่จะใช้ในศึกษาและในการพัฒนาการออกแบบเครื่องจักรกลในทางอุตสาหกรรมต่อไป
สัญลักษณ์เฉพาะ (Nomenclature) Mc = ความชื้นฐานเปียก (moisture content, % w.b.) ρb = ความหนาแน่นรวม (Bulk density, g/cm3) Dg = เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (mm.) ρs = ความหนาแน่นเนื้อ (true density, g/cm3) a= ความยาวของเมล็ดทานตะวัน (mm.) Sp = ความเป็นทรงกลม (Sphericity) b = ความกว้างของเมล็ดทานตะวัน (mm.) Pr = ความพรุน (porosity, %) c= ความหนาของเมล็ดทานตะวัน (mm.) M = น้ำหนักของเฮกเซน (g) W = น้ำหนักเมล็ดทานตะวัน 50 เมล็ด (g) VS = ปริมาตรเมล็ด (volume of seed, cm3) P = พื้นที่ภาพฉาย (projected area, cm2) V = ปริมาตรของภาชนะบรรจุ (cm3) Ma = น้ำหนักเมล็ดทานตะวันก่อนอบ (g) Ar= มุมเอียง (angle of repose, degree) Mb = น้ำหนักเมล็ดทานตะวันหลังอบ (g) ρ = ความหนาแน่นของเฮกเซน (g/cm3) µ = สัมประสิทธิ์แรงเสียดทานสถิตย์ (coefficient of friction) Ms = มวลรวมของ 100 เมล็ด (g) Vt = ความเร็วสุดท้าย (Terminal velocity m/s ) |
2. วัสดุและวิธีการทดลอง
2.1 การเตรียมวัตถุดิบ
เมล็ดทานตะวันที่ใช้ในทดลองเป็นเมล็ดทานตะวันที่ใช้ในการบริโภค และยังไม่กะเทาะเปลือกซึ่งได้หาซื้อจากตลาดนัดสุวรรณภูมิ เขตลาดกระบัง กรุงเทพมหานครซึ่งเก็บไว้ในถุงสุญญากาศ จำนวน 2 ถุง ถุงละ 1000 g ทำการกะเทาะเปลือกเมล็ดให้ได้อย่างน้อย 1000 g ผนึกถุงเก็บไว้ในที่แห้ง เพื่อป้องกันเมล็ดเสียหายทำการคัดเลือกเมล็ดทานตะวันด้วยมืออีกครั้ง ทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก จากนั้นทำการหาปริมาณความชื้นเริ่มต้น โดยสุ่มเลือกเมล็ดประมาณ 5 g ทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก นำไปอบในตู้อบ อุณหภูมิ 105 °C นาน 2 ชั่วโมง หาความชื้นเริ่มต้นจากสมการ
หลังจากนั้นทำการปรับระดับความชื้นของเมล็ดเพิ่มอีก4 ระดับ โดยอิงค่าความชื้นเริ่มต้นเป็นเกณฑ์ ปรับความชื้น เพิ่ม ขึ้น 3,6,9,12 % ตามลำดับ คำนวณหาปริมาณน้ำที่ต้องเติมลงไปจากสมการที่ (1) เติมน้ำที่คำนวณได้ลงไปผสมกับเมล็ดในถุงให้ทั่วถึง จากนั้นทำการผนึกถุง นำไปเก็บไว้ที่อุณหภูมิ 5 °C เป็นเวลา 7 วันโดยต้องทำการเขย่าถุงให้เมล็ดผสมกับน้ำให้ทั่วทุกๆวัน ก่อนจะนำเมล็ดมาวัดหาค่าคุณสมบัติต่างๆให้นำเมล็ดออกมาจากตู้เย็นวางทิ้งไว้ 10 นาทีเพื่อปรับอุณหภูมิให้เท่ากับอุณหภูมิห้อง
2.2 วิธีการทดลอง
2.2.1 มวลรวม100 เมล็ด ( 100 Mass )
นำเมล็ดทานตะวันที่เตรียมไว้ทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก ทำการสุ่ม เลือกเมล็ดความชื้นละ 100 เมล็ด ชั่งน้ำหนักโดยชั่งด้วยเครื่องชั่งดิจิตอลที่มีความละเอียด 0.01 g ทำการทดลองซ้ำความชื้นละ 3 ครั้ง และหาค่าเฉลี่ย
2.2.2 ขนาด (size)
ใช้เวอร์เนียร์คาลิปเปอร์ วัดขนาดเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก ทั้งความยาว (a) ความกว้าง (b) และความหนา (c) ความชื้นละ 100 เมล็ด ทุกระดับความชื้น บันทึกผล
รูปที่ 1การวัดขนาดโดยใช้เวอร์เนียร์คาลิปเปอร์
2.2.3 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD)
นำข้อมูลที่ได้จากการวัดขนาดในแต่ละระดับความชื้นมาหาค่าเฉลี่ยและนำไปคำนวณหาเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตจากสมการ
2.2.4 ความเป็นทรงกลม (Sphericity)
สามารถหาค่าความเป็นทรงกลมได้จากสมการดังนี้
2.2.5 พื้นที่ภาพฉาย (Projected area)
ทำการสุ่มเลือกเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือกมาความชื้นละ 50 เมล็ด นำมาเรียงบนกระดาษสีขาว ถ่ายภาพด้วยกล้องถ่ายภาพ จากนั้นนำไปเปรียบเทียบกับช่องสี่เหลี่ยมขนาด 1cm2โดยใช้โปรแกรม Adobe Photoshop CS5.1 จะได้พื้นที่เมล็ดเป็น pixcelจากนั้นทำการเทียบบัญญัติไตรยางศ์ เพื่อหาพื้นที่เมล็ดในหน่วย cm2
รูปที่ 2การหาพื้นที่ภาพฉาย
2.2.6 ความหนาแน่นรวม (bulk density)
เทเมล็ดทานตะวันผ่านกรวยที่มีความสูงห่างจากภาชนะ 15 cm.ทำการเกลี่ยเมล็ดโดยใช้ไม้บรรทัดโดยให้เกลี่ยเมล็ดพอดีกับปากภาชนะชั่งน้ำหนักของเมล็ดและคำนวณหาค่าความหนาแน่นรวมจากสมการ
2.2.7 ความหนาแน่นเนื้อ (true density)
คำนวณหาความหนาแน่นของเฮกเซน โดยนำขวด Pychonometerชั่งน้ำหนักเติมเฮกเซนจนเต็มปิดฝาชั่งน้ำหนักแล้วคำนวณหาความหนาแน่นจากสมการ
จากนั้นนำเมล็ดทานตะวันที่กะเทาะเปลือกแล้วจำนวน50เมล็ดชั่งน้ำหนักและหาปริมาตรของเมล็ด โดยนำไปใส่ในขวด Phychonometerที่เติมเฮกเซนไว้แล้ว ปิดฝาแล้วนำไปชั่งอีกครั้ง จะสามารถหาปริมาตรของเมล็ดได้ โดยปริมาตรของเมล็ดที่ถูกแทนที่เท่ากับปริมาตรของเฮกเซนที่แทนที่ด้วยเมล็ดทานตะวัน หาความหนาแน่นเนื้อ จาก สมการ
สำหรับการหาค่าความหนาแน่นเนื้อของเมล็ดทานตะวันแบบไม่กะเทาะเปลือก ทำได้โดยชั่งเมล็ด บนเครื่องชั่งดิจิตอลที่มีค่าความละเอียดที่ 0.0001 g ใส่เฮกเซนลงในบีกเกอร์นำไปบีกเกอร์ ไปชั่งน้ำหนักจากนั้นใช้เข็มจิ้มลงเมล็ด และนำไปจุ่มลงในสารที่อยู่ในบีกเกอร์บนเครื่องชั่งดิจิตอลแล้วบันทึกค่าที่อ่านได้และหาปริมาตรของเมล็ดจากสมการ
และคำนวณหาความหนาแน่นเนื้อจากสมการ
2.2.8 ความพรุน (porosity)
ค่าความพรุนสามารถหาได้จากสมการความสัมพันธ์ระหว่างความหนาแน่นเนื้อกับความหนาแน่นรวม ดังนี้
2.2.9 สัมประสิทธิ์แรงเสียดทานสถิตย์ (coefficient of friction)
นำเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก อย่างละ 10 เมล็ดมาหาค่ามุมเอียง โดยวางนำเมล็ดไปวางไว้บนพื้นไม้เอียง ค่อยๆยกพื้นเอียงให้สูงขึ้น จนเมล็ดเริ่มไถลลงทำการทดลองทุกความชื้นและเปลี่ยนพื้นเอียงเป็น พื้นยาง และอลูมิเนียม ตามลำดับ หาค่าสัมประสิทธิ์แรงเสียดทานสถิตย์จากสมการ
รูปที่ 3แสดงการวัดค่ามุมเอียง
2.2.10 ความเร็วสุดท้าย (Terminal Velocity)
หาความเร็วสุดท้ายของเมล็ดทานตะวันโดยนำเมล็ดจำนวน 10 เมล็ด ชั่งมวล บันทึกผลแล้ววางบนตะแกรงบนชุดศึกษาสมบัติทางอากาศพลศาสตร์ค่อยๆ ปรับความเร็วลมเพิ่มทีละน้อยจนเมล็ดลอยพ้นตะแกรงแต่ไม่หลุดออกจากท่อแล้วนำมาหาค่าความเร็วสุดท้าย
3. ผลการทดลองและวิจารณ์
จากการทดลองผลของความชื้นต่อสมบัติทางกายภาพของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก ซึ่งเมล็ดทานตะวันแบบกะเทาะเปลือกมีค่าความชื้นอยู่ในช่วง 1.15 - 13.15 % wb. และเมล็ดทานตะวันแบบไม่กะเทาะเปลือก มีค่าความชื้นอยู่ ในช่วง 2.25 -14.25 % wb. ซึ่งได้ผลการทดลองดังตารางที่ 1 ซึ่งจะแสดงคุณสมบัติทางกายภาพ จำนวนครั้งที่ทำการทดลองซ้ำ ค่าสูงสุด ค่าต่ำสุด และค่าเฉลี่ยโดยจะแสดงคุณสมบัติต่างๆต่อค่าความชื้นเริ่มต้นของเมล็ดทานตะวันแบบกะเทาะเปลือกคือ1.15%wb.
และเมล็ดทานตะวันแบบไม่กะเทาะเปลือกคือ 2.25 % wb.
ตารางที่ 1คุณสมบัติทางกายภาพของเมล็ดทานตะวันแบบกะเทาะเปลือกค่าความชื้น 1.15 % wb. และเมล็ดทานตะวันแบบไม่กะเทาะเปลือกค่าความชื้น 2.25 % wb.
3.ผลการทดลองและวิจารณ์ผลการทดลอง
3.1 มวลรวม100 เมล็ด
รูปที่ 4ความสัมพันธ์ระหว่างมวลรวมและความชื้น
เมื่อความชื้นเพิ่มมากขึ้นค่ามวลรวม 100 เมล็ดมีแนวโน้มที่เพิ่มขึ้น เนื่องจากเมล็ดนั้นได้รับปริมาณน้ำที่เพิ่มขึ้นเมล็ดมีการดูดซึมน้ำเข้าไป ทำให้เมล็ดเกิดการพองตัวและมีขนาดใหญ่ขึ้นจึงส่งผลให้มีมวลรวมที่เพิ่มขึ้นด้วย
ซึ่งมีความสัมพันธ์ดังสมการ
Seed : M = 0.409 Mc + 16.384 (R² = 0.8759)
Kernel : M = 0.1243 Mc + 8.525 ( R² = 0.8818 )
3.2 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเราขาคณิต (GMD)
รูปที่ 5ความสัมพันธ์ระหว่างเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตและความชื้น
เมื่อความชื้นเพิ่มมากขึ้น เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตมีแนวโน้มเพิ่มมากขึ้นเป็นเชิงเส้น เนื่องจากขนาดเมล็ดนั้นมีการดูดซึมน้ำเข้าไปส่งผลให้มีความยาว ความกว้าง ความหนาที่เพิ่มขึ้น จึงส่งผลให้เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตเพิ่มขึ้นตามไปด้วยด้วย ซึ่งคล้ายกับงานวิจัย
hemp seed (Sacilik et al., 2003)
sunflower seed ( R.K.Gupta;S.K .Das,1996 )
ซึ่งมีความสัมพันธ์ดังสมการ
Seed : Dg = 0.0193Mc + 9.5965 ( R² = 0.8825 )
Kernel : Dg = 0.005Mc + 5.5883 ( R² = 0.7705 )
3.3 ความเป็นทรงกลม (Sphericity)
รูปที่ 6ความสัมพันธ์ระหว่างความเป็นทรงกลมและความชื้น
เมื่อความชื้นเพิ่มมากขึ้น ค่าความเป็นทรงกลมมีแนวโน้มเพิ่มมากขึ้นเป็นเชิงเส้น เนื่องจากเมล็ดนั้นมีขนาดขยายใหญ่ขึ้น ส่งผลให้เมล็ดมีความเป็นทรงกลมเพิ่มมากขึ้นด้วย ซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003)
moth gram (P.M. Nimkar; Dipali S. Mandwe; Renu M. Dudhe,2005)
ซึ่งมีความสัมพันธ์ดังสมการ
Seed :ϕ = 0.0003Mc + 0.4721 (R² = 0.8848)
Kernel :ϕ = 0.0001Mc + 0.4198 (R² = 0.8475)
3.4 พื้นที่ภาพฉาย (Projected area)
รูปที่ 7ความสัมพันธ์ระหว่างพื้นที่ภาพฉายและความชื้น
เมื่อความชื้นเพิ่มมากขึ้น เมล็ดมีการดูดซึมน้ำเข้าไป จะส่งผลให้เมล็ดขยายตัวเพิ่มขึ้นซึ่งส่งผลพื้นที่ภาพฉายมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น ซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003) sunflower seed ( R.K.Gupta;S.K .Das,1996 ) ซึ่งมีความสัมพันธ์ดังสมการ
Seed : P = 0.0081Mc + 1.3971 (R² = 0.8985)
Kernel : P = 0.0005Mc + 0.5317 (R² = 0.8904)
3.5 ความหนาแน่นรวม (bulk density)
รูปที่ 8ความสัมพันธ์ระหว่างความหนาแน่นรวมและความชื้น
เมื่อค่าความชื้นมีค่าเพิ่มมากขึ้น ความหนาแน่นรวมมีแนวโน้มลดลงเป็นเชิงเส้น ทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก เนื่องจาก เมื่อเมล็ดได้รับน้ำเข้าไปเมล็ดจะขยายตัวออกทำให้มีปริมาตรที่เพิ่มขึ้น แต่มีมวลเพิ่มขึ้นเพียงเล็กน้อยเนื่องจากภายในเมล็ดนั้นประกอบด้วยไขมันอยู่มาก ซึ่งไขมันจะไม่รวมตัวกับน้ำ ทำให้มวลเมล็ดเพิ่มขึ้นเพียงเล็กน้อย และเมื่อบรรจุลงภายในภาชนะ ทำให้เกิดช่องว่างภายในภาชนะมากขึ้น จึงทำให้บรรจุเมล็ดได้น้อยลง ทำให้น้ำหนักรวมเมล็ดลดลง ส่งผลให้ค่าความหนาแน่นรวมมีค่าลดลง โดยความหนาแน่นรวมของเมล็ดที่กะเทาะเปลือกจะมีค่ามากกว่าเพราะเมล็ดมีขนาดเล็ก เมื่อบรรจุในภาชนะจะสามารถบรรจุได้มากกว่าน้ำหนักรวมจึงมากกว่าทำให้ความหนานแน่นรวมมากกว่าเมล็ดที่ยังไม่กะเทาะเปลือกซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003) moth gram (P.M. Nimkar; Dipali S. Mandwe; Renu M. Dudhe,2005) มีความสัมพันธ์ดังสมการ
Seed :ρb = -0.0056Mc + 0.3064 (R² = 0.927)
Kernel :ρb = -0.0066Mc + 0.5968 (R² = 0.8904)
3.6 ความหนาแน่นเนื้อ (True density)
รูปที่ 9ความสัมพันธ์ระหว่างความหนาแน่นเนื้อและความชื้น
เมื่อค่าความชื้นมีค่าเพิ่มมากขึ้น ความหนานแน่นเนื้อของเมล็ดมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น เนื่องจากเมล็ดมีเกิดการพองตัว โมเลกุลของน้ำเข้าไปอุดรูพรุนในเมล็ด ส่งผลให้น้ำหนักเมล็ดเพิ่มขึ้น ทำให้ความหนาแน่นรวมของเมล็ดมีค่าเพิ่มขึ้นตามไปด้วย ซึ่งสอดคล้องกับงานวิจัยhemp seed (Saciliket al,2003) sunflower seed
(R.K.Gupta;S.K .Das,1996) ซึ่งมีความสัมพันธ์ดังสมการ
Seed :ρs = 0.01Mc + 1.4296 (R² = 0.6515)
Kernel :ρs = 0.001 Mc + 1.179 (R² = 0.7312)
3.7 ความพรุน (Porosity)
รูปที่ 10ความสัมพันธ์ระหว่างความพรุนและความชื้น
เมื่อค่าความชื้นเพิ่มมากขึ้น ค่าความพรุนของเมล็ดจะมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น โดยที่เมล็ดทานตะวันที่ไม่กะเทาะเปลือกมีความพรุนที่สูงกว่าเมล็ดทานตะวันกะเทาะเปลือกเนื่องจาก ภายในเมล็ดทานตะวันกะเทาะเปลือกนั้นมีช่องว่างของรูพรุนระหว่างเมล็ด กับเปลือกอยู่มากกว่า ส่งผลให้ค่าความพรุนมีค่ามากซึ่งมีลักษณะคล้ายกับงานวิจัยsunflower seed ( R.K.Gupta;S.K .Das,1996 )
ซึ่งจะมีความสัมพันธ์กันดังสมการ
Seed :ε= 0.4472Mc + 79.56 (R² = 0.8677)
Kernel :ε = 0.5961Mc + 49.386 (R² = 0.8836)
3.8 ปริมาตรต่อหนึ่งเมล็ด ( Volume per seed )
รูปที่ 11ความสัมพันธ์ระหว่างปริมาตรต่อหนึ่งเมล็ดและความชื้น
เมื่อค่าความชื้นเพิ่มมากขึ้น ปริมาตรต่อหนึ่งเมล็ดมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น เนื่องจากเมื่อความชื้นเพิ่มขึ้น เมล็ดมีการดูดซึมน้ำเข้าไป เมล็ดจะเกิดการขยายตัวออก ทำให้มีขนาดที่ใหญ่ขึ้นทำให้ปริมาตรก็จะเพิ่มขึ้นตามไปด้วยซึ่งมีความสัมพันธ์ดังสมการ
Seed : V= 0.447Mc + 79.56 (R² = 0.8677)
Kernel : V = 0.0023Mc + 0.0664 (R² = 0.9089)
3.10 สัมประสิทธิ์แรงเสียดทานสถิตย์ (coefficient of friction)
ตารางที่ 2แสดงสมการความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์กับความชื้นและค่า R2
รูปที่ 12ความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดทานตะวันไม่กะเทาะเปลือกและความชื้น
ค่าสัมประสิทธิ์แรงเสียดทานสถิตของเมล็ดทานตะวันทั้ง 2 แบบมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น ซึ่งสัมพันธ์กับค่าความชื้นที่เพิ่มขึ้น ซึ่งพบว่าค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ ระหว่างเมล็ดกับ พื้นยาง จะมีค่ามากที่สุด รองลงมาคือ พื้นไม้ และ อะลูมิเนียม ตามลำดับซึ่งแสดงว่า เมล็ดนั้นทนการไหลต่อพื้นยางได้มากกว่าและพื้นอะลูมิเนียมมีค่าสัมประสิทธิ์แรงเสียดทานน้อยนั้น คือเมล็ดสามารถไหลได้ดีในพื้นอะลูมิเนียม ซึ่งสามารถนำข้อมูลนี้ไปประยุกต์ใช้ในการออกแบบเครื่องจักรกลต่อไปได้
3.11 ความเร็วสุดท้าย (Terminal velocity)
รูปที่ 14ความสัมพันธ์ระหว่างความเร็วสุดท้ายและความชื้น
เมื่อความชื้นเพิ่มขึ้นความเร็วสุดท้ายมีแนวโน้มเพิ่มขึ้นเนื่องจากเมื่อความชื้นเพิ่มขึ้น มวลเมล็ด ค่าความเป็นทรงกลม พื้นที่ภาพฉาย มีค่าเพิ่มขึ้น ต้องใช้ลมที่มากขึ้นเพื่อให้เมล็ดลอยขึ้นสูง ส่งผลให้ค่าความเร็วสุดท้ายเพิ่มขึ้นด้วยเป็นเชิงเส้นซึ่งสามารถนำไปประยุกต์ใช้ในการออกแบบเครื่องจักรในการคัดเลือกเมล็ด ซึ่งคล้ายกับงานวิจัยsunflower seed ( R.K.Gupta;S.K .Das,1996 )
ซึ่งมีความสัมพันธ์ดังสมการ
Seed :Vt = 0.015Mc + 7.3643 (R² = 0.6273)
Kernel :Vt = 0.0187Mc + 8.4445 (R² = 0.7786)
4. สรุปผลการทดลอง
4.1 ความยาว ความกว้าง ความหนา ขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเชิงเรขาคณิต และความเป็นทรงกลม ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง
4.2 มวลรวม100 เมล็ด ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง
4.3 พื้นที่ภาพฉาย ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง
4.4 ความหนาแน่นรวม ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผกผัน
4.5 ความหนาแน่นเนื้อของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง
4.6 ความพรุน ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง
4.7 ปริมาตรต่อหนึ่งเมล็ด ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง
4.8 สัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรงในทุกพื้นผิว โดยเรียงลำดับค่าสัมประสิทธิ์แรงเสียดทานสถิตย์จากมากไปน้อย ได้เป็