News and Articles

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก


หมวดหมู่: ผลงานวิจัยสมบัติเชิงวิศวกรรมของอาหาร [แผนการสอนและกิจกรรม]
วันที่: 28 ตุลาคม พ.ศ. 2555

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

( Effect of moisture content on some physical properties of sunflower seed and kernel )

สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

เกียรติศักดิ์ งามวิริยะประเสริฐ ณฐกฤช จารุวัฒนาสกุล ณัฐกิตติ์ กิติวงค์ วสันต์ อินทร์ตา

บทคัดย่อ

จากการศึกษาผลของความชื้นต่อสมบัติทางกายภาพของเมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก มีจุดประสงค์เพื่อศึกษาเกี่ยวกับสมบัติด้านต่างๆ ของเมล็ดทานตะวันเมื่อความชื้นมีค่าเปลี่ยนไป โดยเมื่อทำการวัดค่าโดยรวม เมล็ดทานตะวันแบบกะเทาะเปลือกจะมีค่าเฉลี่ยของ ความยาว,ความกว้าง,ความหนา,ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราคณิต,ความเป็นทรงกลม,ความหนาแน่นเนื้อ,ความหนาแน่นรวม,ความพรุน รวมทั้ง พื้นที่ภาพฉาย,ปริมาตรต่อหนึ่งเมล็ด,สัมประสิทธิ์แรงเสียดทานสถิตย์ของผิวไม้ อะลูมิเนียม ยาง และ ความเร็วสุดท้ายที่ความชื้นเริ่มต้น (1.15% wb.) คือ 13.41 mm,5.59 mm,2.37 mm,5.6 mm,0.41,1.177 g/cm3,0.602 g/cm3, 48.88%,0.535cm2,1.575cm3,0.6751 ,0.6236 ,0.8557, 8.27 m/s ตามลำดับและพบว่าเมล็ดทานตะวันแบบไม่กะเทาะเปลือกจะมีค่าเฉลี่ยของค่าความยาว,ความกว้าง,ความหนา,ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราคณิต , ความเป็นทรงกลม ความหนาแน่นเนื้อ ,ความหนาแน่นรวม ความพรุน รวมทั้ง พื้นที่ภาพฉาย,ปริมาตรต่อหนึ่งเมล็ด สัมประสิทธิ์แรงเสียดทานสถิตย์ของ ผิวไม้ อะลูมิเนียม ยาง และ ความเร็วสุดท้ายที่ความชื้นเริ่มต้น (2.25% wb.) คือ 20.39mm,9.41mm, 4.65mm, 9.6mm, 0.474 ,1.575 g/cm3, 0.296g/cm3 , 81.21 %, 1.41cm2,0.073 cm3, 0.625,0.5820.845 ,7.33 m/s ตามลำดับ และทำการเพิ่มความชื้นในระดับต่างๆ ( 4.15 -15.25 % wb. ) ซึ่งจากผลการทดลองพบว่า ความชื้นมีผลต่อการเปลี่ยนแปลงของคุณสมบัติต่างๆที่ได้กล่าวมาโดยมีลักษณะความสัมพันธ์กันเป็นเชิงเส้น โดยจะแปรผันตรงซึ่งกัน เว้นแต่ ความหนาแน่นรวมจะมีลักษณะที่แปรผกผันกับความชื้น

1.บทนำ

ทานตะวัน (sunflower) มีชื่อวิทยาศาสตร์Helianthus annuus L.เป็นพืชน้ำมันที่สำคัญชนิดหนึ่งของโลก นิยมปลูกกันมากในเขตอบอุ่น ทานตะวันมีการปลูกเพื่อใช้บริโภคโดยตรง และใช้สกัดเป็นน้ำมัน เมล็ดทานตะวันมีน้ำมันในเมล็ดอยู่ประมาณ 40% ซึ่งเป็นน้ำมันที่มีคุณค่าทางโภชนาการสูง เนื่องจากมีกรดไขมันไม่อิ่มตัวสูงถึง 88%ซึ่งถือว่าสูงเมื่อเปรียบเทียบกับพืชน้ำมันชนิดอื่น (เสาวรี บำรุง, 2550) ทั้งนี้ยังประกอบไปด้วย โปรตีน ธาตุเหล็ก แคลเซียมฟอสฟอรัส วิตามินเอ ดี อี และเค โดยเฉพาะวิตามินอีที่มีอยู่ในปริมาณสูงในเมล็ดทานตะวันนั้นมีคุณค่าทางโภชนาการสูง คือช่วยบำรุงผิวหนังให้เต่งตึงดูอ่อนวัย ชะลอความแก่ของผิวหนัง ลดการอักเสบ ป้องกันการเกิดการแข็งตัวของเลือด ป้องกันโรคมะเร็ง และโรคหัวใจ ป้องกันการเกิดต้อกระจก สามารถนำไปทำ Lecthinเพื่อใช้ในทางการแพทย์เพื่อช่วยลดไขมันในเส้นเลือด (Cholesterol) เป็นต้น นอกจากนี้กากที่ได้หลังจากการสกัดน้ำมันแล้วสามารถนำไปใช้เป็นอาหารสัตว์ได้เป็นอย่างดีเนื่องจาก มีโปรตีนสูงและย่อยง่าย

ในทางด้านอุตสาหกรรม ทานตะวันยังถูกนำมาใช้เป็นวัตถุดิบในอุตสาหกรรมต่างๆ เช่น ครีมเทียม เนยเทียม เครื่องสำอางน้ำมันชักเงา น้ำมันหล่อลื่น การทำสบู่ อุตสาหกรรมฟอกสีและทำสี และยังสามารถนำมาผลิตเป็นไบโอดีเซลได้อีกด้วย

ดังนั้นทางคณะผู้วิจัยจึงได้ทำการศึกษาคุณสมบัติทางกายภาพของเมล็ดทานตะวัน และศึกษาความสัมพันธ์ระหว่างความชื้นกับคุณสมบัติที่เปลี่ยนไปของ เมล็ดทานตะวันทั้งแบบกะเทาะเปลือก และไม่กะเทาะเปลือก เช่น ความยาว ความกว้าง ความหนา มวลรวม100 เมล็ด ขนาดเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราคณิต ความเป็นทรงกลม พื้นที่ภาพฉาย ความหนาแน่นรวม ความหนาแน่นเนื้อ ความพรุน ปริมาตรต่อหนึ่งเมล็ด สัมประสิทธิ์แรงเสียดทานสถิตย์ และความเร็วสุดท้าย เพื่อเป็นข้อมูลที่มีประโยชน์ ที่จะใช้ในศึกษาและในการพัฒนาการออกแบบเครื่องจักรกลในทางอุตสาหกรรมต่อไป

สัญลักษณ์เฉพาะ (Nomenclature)

Mc = ความชื้นฐานเปียก (moisture content, % w.b.)

ρb = ความหนาแน่นรวม (Bulk density, g/cm3)

Dg = เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (mm.)

ρs = ความหนาแน่นเนื้อ (true density, g/cm3)

a= ความยาวของเมล็ดทานตะวัน (mm.)

Sp = ความเป็นทรงกลม (Sphericity)

b = ความกว้างของเมล็ดทานตะวัน (mm.)

Pr = ความพรุน (porosity, %)

c= ความหนาของเมล็ดทานตะวัน (mm.)

M = น้ำหนักของเฮกเซน (g)

W = น้ำหนักเมล็ดทานตะวัน 50 เมล็ด (g)

VS = ปริมาตรเมล็ด (volume of seed, cm3)

P = พื้นที่ภาพฉาย (projected area, cm2)

V = ปริมาตรของภาชนะบรรจุ (cm3)

Ma = น้ำหนักเมล็ดทานตะวันก่อนอบ (g)

Ar= มุมเอียง (angle of repose, degree)

Mb = น้ำหนักเมล็ดทานตะวันหลังอบ (g)

ρ = ความหนาแน่นของเฮกเซน (g/cm3)

µ = สัมประสิทธิ์แรงเสียดทานสถิตย์ (coefficient of friction)

Ms = มวลรวมของ 100 เมล็ด (g)

Vt = ความเร็วสุดท้าย (Terminal velocity m/s )

2. วัสดุและวิธีการทดลอง

2.1 การเตรียมวัตถุดิบ

เมล็ดทานตะวันที่ใช้ในทดลองเป็นเมล็ดทานตะวันที่ใช้ในการบริโภค และยังไม่กะเทาะเปลือกซึ่งได้หาซื้อจากตลาดนัดสุวรรณภูมิ เขตลาดกระบัง กรุงเทพมหานครซึ่งเก็บไว้ในถุงสุญญากาศ จำนวน 2 ถุง ถุงละ 1000 g ทำการกะเทาะเปลือกเมล็ดให้ได้อย่างน้อย 1000 g ผนึกถุงเก็บไว้ในที่แห้ง เพื่อป้องกันเมล็ดเสียหายทำการคัดเลือกเมล็ดทานตะวันด้วยมืออีกครั้ง ทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก จากนั้นทำการหาปริมาณความชื้นเริ่มต้น โดยสุ่มเลือกเมล็ดประมาณ 5 g ทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก นำไปอบในตู้อบ อุณหภูมิ 105 °C นาน 2 ชั่วโมง หาความชื้นเริ่มต้นจากสมการ

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

หลังจากนั้นทำการปรับระดับความชื้นของเมล็ดเพิ่มอีก4 ระดับ โดยอิงค่าความชื้นเริ่มต้นเป็นเกณฑ์ ปรับความชื้น เพิ่ม ขึ้น 3,6,9,12 % ตามลำดับ คำนวณหาปริมาณน้ำที่ต้องเติมลงไปจากสมการที่ (1) เติมน้ำที่คำนวณได้ลงไปผสมกับเมล็ดในถุงให้ทั่วถึง จากนั้นทำการผนึกถุง นำไปเก็บไว้ที่อุณหภูมิ 5 °C เป็นเวลา 7 วันโดยต้องทำการเขย่าถุงให้เมล็ดผสมกับน้ำให้ทั่วทุกๆวัน ก่อนจะนำเมล็ดมาวัดหาค่าคุณสมบัติต่างๆให้นำเมล็ดออกมาจากตู้เย็นวางทิ้งไว้ 10 นาทีเพื่อปรับอุณหภูมิให้เท่ากับอุณหภูมิห้อง

2.2 วิธีการทดลอง

2.2.1 มวลรวม100 เมล็ด ( 100 Mass )

นำเมล็ดทานตะวันที่เตรียมไว้ทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก ทำการสุ่ม เลือกเมล็ดความชื้นละ 100 เมล็ด ชั่งน้ำหนักโดยชั่งด้วยเครื่องชั่งดิจิตอลที่มีความละเอียด 0.01 g ทำการทดลองซ้ำความชื้นละ 3 ครั้ง และหาค่าเฉลี่ย

2.2.2 ขนาด (size)

ใช้เวอร์เนียร์คาลิปเปอร์ วัดขนาดเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก ทั้งความยาว (a) ความกว้าง (b) และความหนา (c) ความชื้นละ 100 เมล็ด ทุกระดับความชื้น บันทึกผล

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 1การวัดขนาดโดยใช้เวอร์เนียร์คาลิปเปอร์

2.2.3 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD)

นำข้อมูลที่ได้จากการวัดขนาดในแต่ละระดับความชื้นมาหาค่าเฉลี่ยและนำไปคำนวณหาเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตจากสมการ

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

2.2.4 ความเป็นทรงกลม (Sphericity)

สามารถหาค่าความเป็นทรงกลมได้จากสมการดังนี้

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

2.2.5 พื้นที่ภาพฉาย (Projected area)

ทำการสุ่มเลือกเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือกมาความชื้นละ 50 เมล็ด นำมาเรียงบนกระดาษสีขาว ถ่ายภาพด้วยกล้องถ่ายภาพ จากนั้นนำไปเปรียบเทียบกับช่องสี่เหลี่ยมขนาด 1cm2โดยใช้โปรแกรม Adobe Photoshop CS5.1 จะได้พื้นที่เมล็ดเป็น pixcelจากนั้นทำการเทียบบัญญัติไตรยางศ์ เพื่อหาพื้นที่เมล็ดในหน่วย cm2

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 2การหาพื้นที่ภาพฉาย

2.2.6 ความหนาแน่นรวม (bulk density)

เทเมล็ดทานตะวันผ่านกรวยที่มีความสูงห่างจากภาชนะ 15 cm.ทำการเกลี่ยเมล็ดโดยใช้ไม้บรรทัดโดยให้เกลี่ยเมล็ดพอดีกับปากภาชนะชั่งน้ำหนักของเมล็ดและคำนวณหาค่าความหนาแน่นรวมจากสมการ

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

2.2.7 ความหนาแน่นเนื้อ (true density)

คำนวณหาความหนาแน่นของเฮกเซน โดยนำขวด Pychonometerชั่งน้ำหนักเติมเฮกเซนจนเต็มปิดฝาชั่งน้ำหนักแล้วคำนวณหาความหนาแน่นจากสมการ

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

จากนั้นนำเมล็ดทานตะวันที่กะเทาะเปลือกแล้วจำนวน50เมล็ดชั่งน้ำหนักและหาปริมาตรของเมล็ด โดยนำไปใส่ในขวด Phychonometerที่เติมเฮกเซนไว้แล้ว ปิดฝาแล้วนำไปชั่งอีกครั้ง จะสามารถหาปริมาตรของเมล็ดได้ โดยปริมาตรของเมล็ดที่ถูกแทนที่เท่ากับปริมาตรของเฮกเซนที่แทนที่ด้วยเมล็ดทานตะวัน หาความหนาแน่นเนื้อ จาก สมการ

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

สำหรับการหาค่าความหนาแน่นเนื้อของเมล็ดทานตะวันแบบไม่กะเทาะเปลือก ทำได้โดยชั่งเมล็ด บนเครื่องชั่งดิจิตอลที่มีค่าความละเอียดที่ 0.0001 g ใส่เฮกเซนลงในบีกเกอร์นำไปบีกเกอร์ ไปชั่งน้ำหนักจากนั้นใช้เข็มจิ้มลงเมล็ด และนำไปจุ่มลงในสารที่อยู่ในบีกเกอร์บนเครื่องชั่งดิจิตอลแล้วบันทึกค่าที่อ่านได้และหาปริมาตรของเมล็ดจากสมการ

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

และคำนวณหาความหนาแน่นเนื้อจากสมการ

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

2.2.8 ความพรุน (porosity)

ค่าความพรุนสามารถหาได้จากสมการความสัมพันธ์ระหว่างความหนาแน่นเนื้อกับความหนาแน่นรวม ดังนี้

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

2.2.9 สัมประสิทธิ์แรงเสียดทานสถิตย์ (coefficient of friction)

นำเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก อย่างละ 10 เมล็ดมาหาค่ามุมเอียง โดยวางนำเมล็ดไปวางไว้บนพื้นไม้เอียง ค่อยๆยกพื้นเอียงให้สูงขึ้น จนเมล็ดเริ่มไถลลงทำการทดลองทุกความชื้นและเปลี่ยนพื้นเอียงเป็น พื้นยาง และอลูมิเนียม ตามลำดับ หาค่าสัมประสิทธิ์แรงเสียดทานสถิตย์จากสมการ

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 3แสดงการวัดค่ามุมเอียง

2.2.10 ความเร็วสุดท้าย (Terminal Velocity)

หาความเร็วสุดท้ายของเมล็ดทานตะวันโดยนำเมล็ดจำนวน 10 เมล็ด ชั่งมวล บันทึกผลแล้ววางบนตะแกรงบนชุดศึกษาสมบัติทางอากาศพลศาสตร์ค่อยๆ ปรับความเร็วลมเพิ่มทีละน้อยจนเมล็ดลอยพ้นตะแกรงแต่ไม่หลุดออกจากท่อแล้วนำมาหาค่าความเร็วสุดท้าย

3. ผลการทดลองและวิจารณ์

จากการทดลองผลของความชื้นต่อสมบัติทางกายภาพของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก ซึ่งเมล็ดทานตะวันแบบกะเทาะเปลือกมีค่าความชื้นอยู่ในช่วง 1.15 - 13.15 % wb. และเมล็ดทานตะวันแบบไม่กะเทาะเปลือก มีค่าความชื้นอยู่ ในช่วง 2.25 -14.25 % wb. ซึ่งได้ผลการทดลองดังตารางที่ 1 ซึ่งจะแสดงคุณสมบัติทางกายภาพ จำนวนครั้งที่ทำการทดลองซ้ำ ค่าสูงสุด ค่าต่ำสุด และค่าเฉลี่ยโดยจะแสดงคุณสมบัติต่างๆต่อค่าความชื้นเริ่มต้นของเมล็ดทานตะวันแบบกะเทาะเปลือกคือ1.15%wb.

และเมล็ดทานตะวันแบบไม่กะเทาะเปลือกคือ 2.25 % wb.

ตารางที่ 1คุณสมบัติทางกายภาพของเมล็ดทานตะวันแบบกะเทาะเปลือกค่าความชื้น 1.15 % wb. และเมล็ดทานตะวันแบบไม่กะเทาะเปลือกค่าความชื้น 2.25 % wb.ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

3.ผลการทดลองและวิจารณ์ผลการทดลอง

3.1 มวลรวม100 เมล็ด

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 4ความสัมพันธ์ระหว่างมวลรวมและความชื้น

เมื่อความชื้นเพิ่มมากขึ้นค่ามวลรวม 100 เมล็ดมีแนวโน้มที่เพิ่มขึ้น เนื่องจากเมล็ดนั้นได้รับปริมาณน้ำที่เพิ่มขึ้นเมล็ดมีการดูดซึมน้ำเข้าไป ทำให้เมล็ดเกิดการพองตัวและมีขนาดใหญ่ขึ้นจึงส่งผลให้มีมวลรวมที่เพิ่มขึ้นด้วย

ซึ่งมีความสัมพันธ์ดังสมการ

Seed : M = 0.409 Mc + 16.384 (R² = 0.8759)

Kernel : M = 0.1243 Mc + 8.525 ( R² = 0.8818 )

3.2 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเราขาคณิต (GMD)

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 5ความสัมพันธ์ระหว่างเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตและความชื้น

เมื่อความชื้นเพิ่มมากขึ้น เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตมีแนวโน้มเพิ่มมากขึ้นเป็นเชิงเส้น เนื่องจากขนาดเมล็ดนั้นมีการดูดซึมน้ำเข้าไปส่งผลให้มีความยาว ความกว้าง ความหนาที่เพิ่มขึ้น จึงส่งผลให้เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิตเพิ่มขึ้นตามไปด้วยด้วย ซึ่งคล้ายกับงานวิจัย

hemp seed (Sacilik et al., 2003)

sunflower seed ( R.K.Gupta;S.K .Das,1996 )

ซึ่งมีความสัมพันธ์ดังสมการ

Seed : Dg = 0.0193Mc + 9.5965 ( R² = 0.8825 )

Kernel : Dg = 0.005Mc + 5.5883 ( R² = 0.7705 )

3.3 ความเป็นทรงกลม (Sphericity)

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 6ความสัมพันธ์ระหว่างความเป็นทรงกลมและความชื้น

เมื่อความชื้นเพิ่มมากขึ้น ค่าความเป็นทรงกลมมีแนวโน้มเพิ่มมากขึ้นเป็นเชิงเส้น เนื่องจากเมล็ดนั้นมีขนาดขยายใหญ่ขึ้น ส่งผลให้เมล็ดมีความเป็นทรงกลมเพิ่มมากขึ้นด้วย ซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003)

moth gram (P.M. Nimkar; Dipali S. Mandwe; Renu M. Dudhe,2005)

ซึ่งมีความสัมพันธ์ดังสมการ

Seed :ϕ = 0.0003Mc + 0.4721 (R² = 0.8848)

Kernel :ϕ = 0.0001Mc + 0.4198 (R² = 0.8475)

3.4 พื้นที่ภาพฉาย (Projected area)

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 7ความสัมพันธ์ระหว่างพื้นที่ภาพฉายและความชื้น

เมื่อความชื้นเพิ่มมากขึ้น เมล็ดมีการดูดซึมน้ำเข้าไป จะส่งผลให้เมล็ดขยายตัวเพิ่มขึ้นซึ่งส่งผลพื้นที่ภาพฉายมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น ซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003) sunflower seed ( R.K.Gupta;S.K .Das,1996 ) ซึ่งมีความสัมพันธ์ดังสมการ

Seed : P = 0.0081Mc + 1.3971 (R² = 0.8985)

Kernel : P = 0.0005Mc + 0.5317 (R² = 0.8904)

3.5 ความหนาแน่นรวม (bulk density)

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 8ความสัมพันธ์ระหว่างความหนาแน่นรวมและความชื้น

เมื่อค่าความชื้นมีค่าเพิ่มมากขึ้น ความหนาแน่นรวมมีแนวโน้มลดลงเป็นเชิงเส้น ทั้งแบบกะเทาะเปลือกและไม่กะเทาะเปลือก เนื่องจาก เมื่อเมล็ดได้รับน้ำเข้าไปเมล็ดจะขยายตัวออกทำให้มีปริมาตรที่เพิ่มขึ้น แต่มีมวลเพิ่มขึ้นเพียงเล็กน้อยเนื่องจากภายในเมล็ดนั้นประกอบด้วยไขมันอยู่มาก ซึ่งไขมันจะไม่รวมตัวกับน้ำ ทำให้มวลเมล็ดเพิ่มขึ้นเพียงเล็กน้อย และเมื่อบรรจุลงภายในภาชนะ ทำให้เกิดช่องว่างภายในภาชนะมากขึ้น จึงทำให้บรรจุเมล็ดได้น้อยลง ทำให้น้ำหนักรวมเมล็ดลดลง ส่งผลให้ค่าความหนาแน่นรวมมีค่าลดลง โดยความหนาแน่นรวมของเมล็ดที่กะเทาะเปลือกจะมีค่ามากกว่าเพราะเมล็ดมีขนาดเล็ก เมื่อบรรจุในภาชนะจะสามารถบรรจุได้มากกว่าน้ำหนักรวมจึงมากกว่าทำให้ความหนานแน่นรวมมากกว่าเมล็ดที่ยังไม่กะเทาะเปลือกซึ่งคล้ายกับงานวิจัย hemp seed (Sacilik et al., 2003) moth gram (P.M. Nimkar; Dipali S. Mandwe; Renu M. Dudhe,2005) มีความสัมพันธ์ดังสมการ

Seed :ρb = -0.0056Mc + 0.3064 (R² = 0.927)

Kernel :ρb = -0.0066Mc + 0.5968 (R² = 0.8904)

3.6 ความหนาแน่นเนื้อ (True density)

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 9ความสัมพันธ์ระหว่างความหนาแน่นเนื้อและความชื้น

เมื่อค่าความชื้นมีค่าเพิ่มมากขึ้น ความหนานแน่นเนื้อของเมล็ดมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น เนื่องจากเมล็ดมีเกิดการพองตัว โมเลกุลของน้ำเข้าไปอุดรูพรุนในเมล็ด ส่งผลให้น้ำหนักเมล็ดเพิ่มขึ้น ทำให้ความหนาแน่นรวมของเมล็ดมีค่าเพิ่มขึ้นตามไปด้วย ซึ่งสอดคล้องกับงานวิจัยhemp seed (Saciliket al,2003) sunflower seed

(R.K.Gupta;S.K .Das,1996) ซึ่งมีความสัมพันธ์ดังสมการ

Seed :ρs = 0.01Mc + 1.4296 (R² = 0.6515)

Kernel :ρs = 0.001 Mc + 1.179 (R² = 0.7312)

3.7 ความพรุน (Porosity)

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 10ความสัมพันธ์ระหว่างความพรุนและความชื้น

เมื่อค่าความชื้นเพิ่มมากขึ้น ค่าความพรุนของเมล็ดจะมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น โดยที่เมล็ดทานตะวันที่ไม่กะเทาะเปลือกมีความพรุนที่สูงกว่าเมล็ดทานตะวันกะเทาะเปลือกเนื่องจาก ภายในเมล็ดทานตะวันกะเทาะเปลือกนั้นมีช่องว่างของรูพรุนระหว่างเมล็ด กับเปลือกอยู่มากกว่า ส่งผลให้ค่าความพรุนมีค่ามากซึ่งมีลักษณะคล้ายกับงานวิจัยsunflower seed ( R.K.Gupta;S.K .Das,1996 )

ซึ่งจะมีความสัมพันธ์กันดังสมการ

Seed :ε= 0.4472Mc + 79.56 (R² = 0.8677)

Kernel :ε = 0.5961Mc + 49.386 (R² = 0.8836)

3.8 ปริมาตรต่อหนึ่งเมล็ด ( Volume per seed )

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 11ความสัมพันธ์ระหว่างปริมาตรต่อหนึ่งเมล็ดและความชื้น

เมื่อค่าความชื้นเพิ่มมากขึ้น ปริมาตรต่อหนึ่งเมล็ดมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น เนื่องจากเมื่อความชื้นเพิ่มขึ้น เมล็ดมีการดูดซึมน้ำเข้าไป เมล็ดจะเกิดการขยายตัวออก ทำให้มีขนาดที่ใหญ่ขึ้นทำให้ปริมาตรก็จะเพิ่มขึ้นตามไปด้วยซึ่งมีความสัมพันธ์ดังสมการ

Seed : V= 0.447Mc + 79.56 (R² = 0.8677)

Kernel : V = 0.0023Mc + 0.0664 (R² = 0.9089)

3.10 สัมประสิทธิ์แรงเสียดทานสถิตย์ (coefficient of friction)

ตารางที่ 2แสดงสมการความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์กับความชื้นและค่า R2

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 12ความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดทานตะวันไม่กะเทาะเปลือกและความชื้น

ค่าสัมประสิทธิ์แรงเสียดทานสถิตของเมล็ดทานตะวันทั้ง 2 แบบมีแนวโน้มเพิ่มขึ้นเป็นเชิงเส้น ซึ่งสัมพันธ์กับค่าความชื้นที่เพิ่มขึ้น ซึ่งพบว่าค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ ระหว่างเมล็ดกับ พื้นยาง จะมีค่ามากที่สุด รองลงมาคือ พื้นไม้ และ อะลูมิเนียม ตามลำดับซึ่งแสดงว่า เมล็ดนั้นทนการไหลต่อพื้นยางได้มากกว่าและพื้นอะลูมิเนียมมีค่าสัมประสิทธิ์แรงเสียดทานน้อยนั้น คือเมล็ดสามารถไหลได้ดีในพื้นอะลูมิเนียม ซึ่งสามารถนำข้อมูลนี้ไปประยุกต์ใช้ในการออกแบบเครื่องจักรกลต่อไปได้

3.11 ความเร็วสุดท้าย (Terminal velocity)

ผลของความชื้นต่อคุณสมบัติทางกายภาพของมล็ดทานตะวันแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือก

รูปที่ 14ความสัมพันธ์ระหว่างความเร็วสุดท้ายและความชื้น

เมื่อความชื้นเพิ่มขึ้นความเร็วสุดท้ายมีแนวโน้มเพิ่มขึ้นเนื่องจากเมื่อความชื้นเพิ่มขึ้น มวลเมล็ด ค่าความเป็นทรงกลม พื้นที่ภาพฉาย มีค่าเพิ่มขึ้น ต้องใช้ลมที่มากขึ้นเพื่อให้เมล็ดลอยขึ้นสูง ส่งผลให้ค่าความเร็วสุดท้ายเพิ่มขึ้นด้วยเป็นเชิงเส้นซึ่งสามารถนำไปประยุกต์ใช้ในการออกแบบเครื่องจักรในการคัดเลือกเมล็ด ซึ่งคล้ายกับงานวิจัยsunflower seed ( R.K.Gupta;S.K .Das,1996 )

ซึ่งมีความสัมพันธ์ดังสมการ

Seed :Vt = 0.015Mc + 7.3643 (R² = 0.6273)

Kernel :Vt = 0.0187Mc + 8.4445 (R² = 0.7786)

4. สรุปผลการทดลอง

4.1 ความยาว ความกว้าง ความหนา ขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเชิงเรขาคณิต และความเป็นทรงกลม ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง

4.2 มวลรวม100 เมล็ด ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง

4.3 พื้นที่ภาพฉาย ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง

4.4 ความหนาแน่นรวม ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผกผัน

4.5 ความหนาแน่นเนื้อของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง

4.6 ความพรุน ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง

4.7 ปริมาตรต่อหนึ่งเมล็ด ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรง

4.8 สัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดทานตะวันทั้งแบบกะเทาะเปลือกและแบบไม่กะเทาะเปลือกมีความสัมพันธ์เป็นเชิงเส้นกับความชื้นที่เพิ่มขึ้น ในลักษณะแปรผันตรงในทุกพื้นผิว โดยเรียงลำดับค่าสัมประสิทธิ์แรงเสียดทานสถิตย์จากมากไปน้อย ได้เป็



ข่าวและบทความที่เกี่ยวข้อง
ผลของความชื้นต่อคุณสมบัติทางกายภาพของลูกกระวาน
ผลของความชื้นต่อคุณสมบัติทางกายภาพของลูกกระวาน (Effect of moisture content on some physical properties of cardamom seed) ภาควิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง นฤพนธ์ พันธุ์หวยพงษ์ เบญจพร ตั้งนอบน้อม เบญจมาศ เหมวิบูลย์ วสันต์ อินทร์ตา บทคัดย่อ สมบัติทางกายภาพของลูกกระวานทดลองตามความชื้น ศึกษาที่ความชื้น 9.27%, 12.27%, 15.27%, 18.27 และ 21.27% w.b. (ความชื้นฐานเปียก) ของทั้งเมล็ด มีค่าเฉลี่ยของความสูง ความกว้าง ความหนา คือ 15.75 ,14.04 ,14.80 ตามลำดับที่ความชื้น 9.27%w.b จากการศึกษาแสดงให้เห็นว่ามวล 100 เมล็ดของลูกกระวานนั้นเพิ่มขึ้นจาก 46.45 เป็น 49.45 g, พื้นที่ภาพฉายเพิ่มจาก 1.18 cm² เป็น 1.29 cm² ,ความเป็นทรงกลมเพิ่มจาก 0.94 เป็น 0.96, ความหนาแน่นรวมเพิ่มขึ้น 0.24 g/cm³ เป็น 0.27 g/cm³ และความหนาแน่นเนื้อนั้นลดลงจาก 1.34 g/cm³ เป็น 0.52 g/cm³, ความพรุนนั้นลดลงจาก 78.46% เหลือ 51.72% ,ความเร็วสุดท้ายเพิ่มขึ้นจาก 9.63 m/s เป็น 10.21 m/s และค่าสัมประสิทธิ์แรงเสียดทานสถิตเพิ่มขึ้นจากพื้นผิวอลูมิเนียม (0.30-0.34) , พื้นไม้ (0.24-0.29) และพื้นยาง (0.34-0.49) ที่ความชื้นเพิ่มขึ้นจาก 9.27% ถึง 21.27% w.b. ที่ความชื้น 10.03%, 13.03%, 16.03%, 19.03 และ 22.03% w.b. (ความชื้นฐานเปียก) ของเมล็ดใน มีค่าเฉลี่ยของความสูง ความกว้าง ความหนา คือ 9.45, 7.98, 4.30 ตามลำดับที่ความชื้น 10.03%w.b จากการศึกษาแสดงให้เห็นว่ามวล 100 เมล็ดของลูกกระวานนั้นเพิ่มขึ้นจาก 20.94 เป็น 23.11g, พื้นที่ภาพฉายเพิ่มจาก 0.60 cm² เป็น 0.84 cm² ,ความเป็นทรงกลมเพิ่มจาก 0.72 เป็น 0.74, ความหนาแน่นรวมเพิ่มขึ้น 0.58 g/cm³ เป็น 0.63 g/cm³ และความหนาแน่นเนื้อนั้นลดลงจาก 1.19 g/cm³ เป็น 1.15 g/cm³, ความพรุนนั้นลดลงจาก 51.40% เหลือ 45.77% ,ความเร็วสุดท้ายเพิ่มขึ้นจาก 9.35 m/s เป็น 9.64 m/s และค่าสัมประสิทธิ์แรงเสียดทานสถิตเพิ่มขึ้นจากพื้นผิวอลูมิเนียม (0.41-0.46) , พื้นไม้ (0.51-0.63) และพื้นยาง (0.51-0.78) ที่ความชื้นเพิ่มขึ้นจาก 10.03% ถึง 22.03% w.b. บทนำ กระวานไทย (Amomumkrervanh Pierre) จัดเป็นพืชล้มลุก มีลำต้นอยู่ใต้ดินเรียกว่า เหง้า ก้านใบที่มีลักษณะเป็นกาบหุ้มซ้อนกันแน่นหนาแข็งแรง มีความสูงประมาณ 3 เมตร ใบเรียงสลับกัน แผ่นใบเรียวแหลม ใบยาวประมาณ 12 เซนติเมตร ขอบใบเรียบ ดอกกระวาน เจริญออกมาจากส่วนเหง้าใต้ดิน โผล่ขึ้นมาเหนือพื้นดินเป็นช่อ กลีบดอกสีเหลืองอ่อน ผลมีลักษณะกลมเป็นพวง เปลือกผิวเกลี้ยง เป็นพู ๆ มีสีออกนวล ๆ ลูกกระวานจะแก่ช่วงเดือนสิงหาคม - พฤศจิกายน เมล็ดกระวานมีขนาดเล็กสีน้ำตาล มีจำนวนมาก ทั้งผลและเมล็ดมีกลิ่นหอมคล้ายกับการบูร ช่วงเวลาที่ออกดอกจนผลแก่ใช้เวลาประมาณ 5 เดือน กระวานออกดอกให้ผลผลิตเพียงครั้งเดียว แล้วก็จะตายไป เช่นเดียวกับต้นกล้วย ต้นไผ่ แต่หน่อใหม่ก็จะเจริญโผล่ขึ้นมาแทนและเจริญให้ผลผลิตใหม่ต่อไปอีก การใช้ประโยชน์ของกระวาน แบ่งออกเป็น 2 อย่างคือ 1.) ใช้ในการประกอบอาหาร นำลูกกระวานที่ตากแห้งนำลูกระวานทั้งเมล็ดไปป่นใช้เป็นเครื่องเทศ ใส่ในน้ำพริกแกงเผ็ด แกงกะหรี่ แกงมัสมั่น พะแนง พะโล้ ใช้แต่งกลิ่นและสีของอาหารหลายชนิด เช่น ใส่ในเหล้า ขนมปัง เค้ก คุกกี้แฮม ส่วนผลอ่อนและหน่ออ่อนรับประทานแบบผัก 2.) การใช้ประโยชน์ทางยา กระวานมีสรรพคุณทางสมุนไพรได้ทุก ๆ ส่วน ทั้งราก ลำต้น หน่อ เปลือกลำต้น แก่นของลำต้น ใบ ผลแก่ เมล็ด เหง้าอ่อน ใช้แก้ท้องอืด แน่น จุก เสียด ขับเสมหะ รักษาโรคผิวหนัง แก้ลม ท้องเสีย ฯลฯ กระวานมีคุณค่าทางอาหารสูงประกอบด้วยสารอาหารและแร่ธาตุต่าง ๆ เช่น กระวานส่วนที่กินได้ 100 กรัม*ให้พลังงาน254.0 กิโลแคลอรีโปรตีน9.5gไขมัน6.3gคาร์โบไฮเดรต 39.7g แคลเซียม16.0gฟอสฟอรัส 23.0mgเหล็ก 12.6mg (*กองโภชนาการ กรมอนามัย กระทรวงสาธารณสุข) กระวาน มีน้ำมันหอมระเหย 7.9-8.4% ซึ่งมีกลิ่นหอม ประกอบด้วย การบูร (Camphor) ไพนิน (Pinene) ไลโมนีน (Limonene) เมอร์ซีน (Myrcene) น้ำมันหอมระเหยจากผลกระวานมีฤทธิ์ต้านเชื้อแบคทีเรียPseudomonas aeruginosa (7) (เภสัชกรหญิงสุนทรี สิงหบุตรา เภสัชกรด้านเภสัชสาธารณสุข, สรรพคุณสมุนไพร 200 ) วัตถุประสงค์ประสงค์เพื่อศึกษาผลของความชื้นที่มีต่อคุณสมบัติทางกายภาพของลูกกระวาน เพราะลูกกระวานคือพืชที่มีประโยชน์อย่างมาก เป็น พืชสมุนไพร และใช้ในด้านการครัวเป็นหลัก เป็นเครื่องเทศที่สำคัญชนิดหนึ่งในส่วนประกอบของอาหารหลากหลายชนิด จึงทำให้มีการผลิตลูกกระวานมากขึ้นในปัจจุบัน เพื่อนำความรู้ที่ได้ไปใช้ในการจัดเก็บรักษาผลผลิตที่ได้จากลูกกระวาน และสามารถส่งออกสู่ท้องตลาดทั้งภายในและภายนอกประเทศ โดยจะนำลูกกระวานมาทดลองตามคุณสมบัติทางกายภาพต่างๆเหล่านี้ การหาขนาด ,ความเป็นทรงกลม,น้ำหนัก 100 เมล็ด , พื้นที่ภาพฉาย , ความหนาแน่นรวม , ความหนาแน่นเนื้อ , ความพรุน , ความเร็วสุดท้าย , ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของวัสดุที่แตกต่างกัน 2. วัสดุและวิธีการทดลอง 2.1 วัสดุ เมล็ดลูกกระวาน (บริษัท S A O การเกษตร จำกัดที่อยู่ :8 หมู่ 8 ถนนรามอินทรา แขวงท่าแร้ง เขตบางเขน กทม. 10230) ที่นำมาใช้ในการทดลอง มาทำความสะอาด โดยการคัดเลือกเมล็ดพันธุ์ที่แตกออกจากเมล็ดพันธุ์ที่สมบูรณ์หาความชื้นเริ่มต้นของเมล็ดโดยการนำเอาลูกกระวาน (เมล็ดในและทั้งเมล็ด) ไปอบที่อุณหภูมิ 105 °Cเป็นเวลา 2 ชั่วโมง ปริมาณความชื้นฐานแห้งเริ่มต้นของทั้งเมล็ดเป็น 10.22% (db.) และเมล็ดใน11.15% (db.) 2.2 วิธีการทดลอง ปรับความชื้นที่ต้องการ หาได้โดยการเติมปริมาณน้ำ คำนวณจากความสัมพันธ์ของสมการดังต่อไปนี้ นำตัวอย่างที่เติมน้ำลงไปแล้วใส่ลงถุงพลาสติกแล้วปิดผนึกให้แน่นหนา โดยเก็บตัวอย่างไว้ในตู้เย็นที่อุณหภูมิ 5°Cเป็นเวลา 1 สัปดาห์ เพื่อให้ความชื้นกระจายสม่ำเสมอทั่วตัวอย่างก่อนที่จะนำไปทดลอง ต้องเอาตัวอย่างออกมาไว้ที่อุณหภูมิห้องเป็นเวลา 2 ชั่วโมงก่อนทำการทดลอง คุณสมบัติทางกายภาพที่ทำการทดลองมีระดับความชื้นดังนี้ (นำค่าความชื้นฐานแห้งไปแปลงเป็นความชื้นฐานเปียกก่อน) เมล็ดนอก9.27%, 12.27%, 15.27%, 18.27% และ21.27% (wb.) เมล็ดใน 10.03%, 13.03%, 16.03%, 19.03% และ 22.03% (wb.) ตามลำดับ ขนาดเฉลี่ยของเมล็ด100 เมล็ดใช้การวัดแบบสุ่ม โดยวัดสามมิติ คือ L (ความยาว) , W (ความกว้าง) , T (ความหนา) วัดโดยเวอร์เนียร์คาลิเปอร์ (Vernier Caliper ) ที่มีความละเอียด 0.01 mm ความเป็นทรงกลมของเมล็ดคำนวณโดยใช้ความสัมพันธ์ต่อไปนี้ มวล 100 เมล็ด หาจากเครื่องชั่งอิเล็กทรอนิกส์ที่สามารถ อ่านค่าได้ 4 ตำแหน่ง (0.0000 g) พื้นที่ภาพฉายของลูกกระวานหาได้โดยวิธีการวิเคราะห์ด้วยภาพถ่าย ถ่ายภาพลูกกระวานแต่ละระดับความชื้น ความชื้นละ 50 เมล็ดเมล็ดในและทั้งเมล็ด แล้วนำภาพถ่ายของลูกกระวานแต่ละเมล็ดมาเทียบกับภาพสี่เหลี่ยมจัตุรัสขนาด 1 cm² ความหนาแน่นรวมของลูกกระวาน ใช้ผลการทดลองจากการบรรจุภาชนะ 350 ml (ทั้งเมล็ด) และ 65 ml (เมล็ดใน) ตามลำดับ ซึ่งการบรรจุเมล็ดนั้นต้องให้ภาชนะบรรจุห่างจากปลายกรวย 15 cm แล้วนำไปชั่งน้ำหนักและคำนวณหาความหนาแน่นรวมโดยใช้สูตร ความหนาแน่นเนื้อ คือ อัตราส่วนระหว่างมวลของลูกกระวานและปริมาตรที่แท้จริง โดยใช้วิธีการแทนที่ของเหลว แต่การทดลองนี้นำเฮกเซนมาใช้ในการแทนน้ำเพราะเฮกเซนจะถูกเมล็ดพันธุ์ดูดซึมได้น้อย ความพรุนที่ระดับความชื้นต่างๆคำนวณได้จากความสัมพันธ์ระหว่างความหนาแน่นรวมและความหนาแน่นเนื้อ ดังนี้ เมื่อ เป็นค่าความพรุน (%) , เป็นความหนาแน่นรวม และ เป็นความหนาแน่นเนื้อ ความเร็วสุดท้าย คัดลูกกระวานจำนวน 10 เมล็ด โดยการนำลูกกระวานไปเป่าลมจากเครื่องเป่าลม โดยวัดความเร็วสุดท้ายจากความเร็วลม เราสามารถปรับความเร็วลมจากเครื่องปรับความถี่ โดยปรับให้ลูกกระวานลอยอย่างคงที่ที่ปลายกระบอก ทำเช่นนี้ทุกๆความชื้น ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของลูกกระวานทำการทดลองจากการนำวัสดุ 3 ชนิด ได้แก่ อลูมิเนียม พื้นไม้ และพื้นยาง มาทำการทดลองหาค่ามุมของแต่ละพื้นผิวของวัสดุแล้วนำไปแทนค่าในสูตร 3. ผลและการอภิปราย 3.1 ขนาดของลูกกระวาน ทั้งเมล็ดลูกกระวานและการกระจายขนาดเฉลี่ยของ 100 เมล็ด วัดที่ความชื้น 9.27% (w.b.) มีความกว้าง 14.04±0.81มม. , ความยาว 15.75±0.95มม.ความหนา 14.80±0.97มม. ความกว้างของเมล็ดที่มีขนาดอยู่ที่ 14.00 - 17.00มม. มีประมาณ 90% , ส่วนความยาวที่มีขนาดอยู่ที่ 13.00-15.00มม. มีประมาณ 84% , ส่วนความหนาที่มีขนาดอยู่ที่ 13.00-16.00มม. มีประมาณ 98% ที่ความชื้น 9.27% (w.b.) ขนาดของลูกกระวานเมล็ดในและการกระจายขนาดเฉลี่ยของ 100 เมล็ด วัดที่ความชื้น 10.03 % (w.b.) มีความกว้าง 9.45±0.59 มม. , ความยาว 7.98±0.75 มม.,ความหนา4.30±.074 มม. ความกว้างของเมล็ดที่มีขนาดอยู่ที่ 9.00-10.00 มม. มีประมาณ 66% , ส่วนความยาวที่มีขนาดอยู่ที่ 7.00-9.00 มม. มีประมาณ 82% , ส่วนความหนาที่มีขนาดอยู่ที่ 3.00-5.00 มม. มีประมาณ 77% ที่ความชื้น 10.03% (w.b.) 3.2 น้ำหนัก 100ทั้งเมล็ด น้ำหนัก 100 เมล็ด ของเมล็ดทั้งหมด ในน้ำหนัก 100 เมล็ด จะเพิ่มขึ้นเป็นเส้นตรงจาก 46.35 เป็น 49.46 กรัม จากปริมาณความชื้นที่ 9.27% เป็น 21.27% (w.b.) (รูปที่ 1) สำหรับมวล 100 เมล็ด ช่วงสมการเชิงเส้นได้ดังนี้ Y = 0.2627x + 43.687 (R² = 0.957) เมื่อความชื้นเพิ่มขึ้น มวลจะเพิ่มขึ้นด้วย น้ำหนัก 100 เมล็ดในน้ำหนัก 100 เมล็ด จะเพิ่มขึ้นเป็นเส้นตรงจาก 20.94 เป็น 23.11 กรัม จากปริมาณความชื้นที่ 10.03% เป็น 22.03% (w.b.) (รูปที่ 1) สำหรับมวล 100 เมล็ด ช่วงสมการเชิงเส้นได้ดังนี้ Y = 0.155x + 19.629 (R² = 0.888) เมื่อความชื้นเพิ่มขึ้น มวลจะเพิ่มขึ้นด้วย รูปที่ 1 Effect of moisture content on 100 seed mass (whole fruit, kernel) 3.3 พื้นที่ภาพฉาย พื้นที่ภาพฉายของลูกกระวานทั้งเมล็ด (รูปที่ 2) เพิ่มขึ้น 1.18 - 1.29 cm² ในขณะที่ปริมาณความชื้นเพิ่มขึ้นจาก 9.27% เป็น 21.27% (w.b.) สามารถหาสมการเชิงเส้นได้ดังนี้ Y = 0.0087x + 1.0937 (R² = 0.9494) พื้นที่ภาพฉายของลูกกระวานเมล็ดใน (รูปที่ 2) เพิ่มขึ้น 0.60 - 0.84 cm² ในขณะที่ปริมาณความชื้นเพิ่มขึ้นจาก 10.03% เป็น 22.03 (w.b.) สามารถหาสมการเชิงเส้นได้ดังนี้ Y = 0.02x + 0.4334 (R² = 0.9018) รูปที่ 2 Effect of moisture content on projected area (whole fruit, kernel) 3.4 ความเป็นทรงกลม ความเป็นทรงกลมของลูกกระวานทั้งเมล็ดเพิ่มขึ้นจาก 0.94 เป็น 0.96 มีการเพิ่มขึ้นตามความชื้นจาก 9.27% เป็น 21.27% (w.b.) ดังรูป (รูป 3) สามารถหาสมการเชิงเส้นได้ดังนี้ Y = 0.002x + 0.9195 (R² = 0.9) ความเป็นทรงกลมของลูกกระวานเมล็ดในเพิ่มขึ้นจาก 0.72 เป็น 0.74 มีการเพิ่มขึ้นตามความชื้นจาก 10.03% เป็น 22.03% (w.b.) ดังรูป (รูป 3) สามารถหาสมการเชิงเส้นได้ดังนี้ Y = 0.0013x + 0.7086 (R² = 0.8) รูปที่ 3 Effect of moisture content on sphericity (whole fruit, kernel) 3.5 ความหนาแน่นรวม ค่าของความหนาแน่นรวมของลูกกระวานทั้งเมล็ดที่ต่างระดับความชื้นจาก 9.27% เป็น 21.27% (w.b.) ที่แตกต่างกันจาก 0.24 เป็น 0.27 g/cm³ (รูป 4) ความหนาแน่นรวมของลูกกระวานสามารถเขียนเป็นสมการเชิงเส้นได้ดังนี้ Y = 0.0027x +0.2113 (R² = 0.9412) ค่าของความหนาแน่นรวมของลูกกระวานเมล็ดในที่ต่างระดับความชื้นจาก 10.03% เป็น 22.03%wb.ที่แตกต่างกันจาก 0.58 เป็น 0.63 g/cm³ (รูป 4) ความหนาแน่นรวมของลูกกระวานสามารถเขียนเป็นสมการได้ดังนี้ Y = 0.003x + 0.557 (R² = 0.613) รูปที่ 4 Effect of moisture content on bulk density (kernel) 3.6 ความหนาแน่นเนื้อ ความหนาแน่นเนื้อหรือความหนาแน่นจริงของทั้งเมล็ดของลูกกระวานมีค่าจาก 1.34 - 0.52 g/cm³ เมื่อระดับความชื้นเพิ่มขึ้นจาก 9.27% เป็น 21.27% (w.b.) (รูปที่ 5) ความหนาแน่นจริงมีความสัมพันธ์กับความชื้นดังนี้ Y = -0.0071x + 1.8922 (R² = 0.836) ความหนาแน่นเนื้อหรือความหนาแน่นจริงของเมล็ดในของลูกกระวานมีค่าจาก 1.19 - 1.15 g/cm³ เมื่อระดับความชื้นเพิ่มขึ้นจาก 10.03% เป็น 22.03% (w.b.) (รูปที่ 5) ความหนาแน่นจริงมีความสัมพันธ์กับความชื้นดังนี้ Y = -0.003x + 1.218 (R² = 0.703) รูปที่ 5 Effect of moisture content on true density (whole fruit, kernel) 3.7 ความพรุนของเมล็ด ความพรุนของลูกกระวานทั้งเมล็ดของลูกกระวานจะลดลงจาก 78.46% เป็น 51.72% โดยมาการเพิ่มขึ้นของความชื้นจาก9.27% เป็น 21.27% (w.b.) (รูป 6) ความสัมพันธ์ระหว่างความพรุนกับความชื้นแสดงได้ดังสมการ Y = -2.2333x + 96.161 (R² = 0.9006) ความพรุนของลูกกระวานเมล็ดในจะลดลงจาก 51.40% เป็น 45.77% โดยมาการเพิ่มขึ้นของความชื้นจาก 10.03% เป็น 22.03%wb. (รูป 6) ความสัมพันธ์ระหว่างความพรุนกับความชื้นแสดงได้ดังสมการ Y = -0.3797x + 54.142 (R² = 0.7435) รูปที่ 6 Effect of moisture content on porosity (whole fruit, kernel) 3.8 ความเร็วสุดท้าย ผลการทดลองสำหนับความเร็วปลายของลูกกระวานเมล็ดนอกที่ระดับความชื้นดังรูปที่ 7 พบว่าเป็นการเพิ่มเชิงเส้นตรง 9.63 - 10.44 m/s ของการเพิ่มความชื้นจาก 9.27% เป็น 21.27% (w.b.) สามารถแสดงความสัมพันธ์ระหว่างความเร็วสุดท้ายกับความชื้นได้ดังนี้ Y = 0.0511x + 9.2669 (R² = 0.612) ผลการทดลองสำหนับความเร็วปลายของลูกกระวานเมล็ดในที่ระดับความชื้นดังรูปที่ 7 พบว่าเป็นการเพิ่มเชิงเส้นตรง 9.35 - 9.64 m/s ของการเพิ่มความชื้นจาก 10.03% เป็น 22.03% (w.b.) สามารถแสดงความสัมพันธ์ระหว่างความเร็วสุดท้ายกับความชื้นได้ดังนี้ Y = -0.004x²+0.122x + 8.731 (R² = 0.612) รูปที่ 7 Effect of moisture content on terminal velocity (whole fruit, kernel) 3.9 ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของลูกกระวาน ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดนอกกับพื้นผิวอลูมิเนียม พื้นไม้ และพื้นยาง กับความชื้นที่ 9.27% ถึง 21.27% (%wb.) ดังแสดงในรูป (รูป 8-พื้นอลูมิเนียม ,พื้นไม้ ,พื้นยาง) จะสังเกตเห็นว่าค่าสัมประสิทธิ์แรงเสียดทานสถิตย์เพิ่มขึ้นในทุกๆพื้นผิวของทุกความชื้น เนื่องจากการยึดเกาะที่เพิ่มขึ้นระหว่างเมล็ดกับพื้นผิว เมื่อความชื้นเพิ่มขึ้นจาก 9.27% เป็น 21.27% (wb.) สามารถเขียนสมการความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดกับพื้นผิวอลูมิเนียม พื้นไม้ และพื้นยางได้ดังนี้ สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวอลูมิเนียม Y = 0.003x + 0.2702 (R² = 0.8804) สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวไม้ Y = 0.004x + 0.2109 (R² = 0.8571) สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวยาง Y = 0.0103x + 0.2342 (R² = 0.7347) รูปที่ 8 Effect of moisture content on coefficient of friction (aluminium ,wood, rubber) . (whole fruit) ค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดในกับพื้นผิวอลูมิเนียม พื้นไม้ และพื้นยาง กับความชื้นที่ 10.03% ถึง 22.03% (w.b.) ดังแสดงในรูป (รูป 9-พื้นอลูมิเนียม ,พื้นไม้ ,พื้นยาง) จะสังเกตเห็นว่าค่าสัมประสิทธิ์แรงเสียดทานสถิตย์เพิ่มขึ้นในทุกๆพื้นผิวของทุกความชื้น เนื่องจากการยึดเกาะที่เพิ่มขึ้นระหว่างเมล็ดกับพื้นผิว เมื่อความชื้นเพิ่มขึ้นจาก 10.03% เป็น 22.03% (w.b.) สามารถเขียนสมการความสัมพันธ์ระหว่างสัมประสิทธิ์แรงเสียดทานสถิตย์ของเมล็ดกับพื้นผิวอลูมิเนียม พื้นไม้ และพื้นยางได้ดังนี้ สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวอลูมิเนียม Y = 0.0037x + 0.3777 (R² = 0.9004) สัมประสิทธิ์แรงเสียดทานสถิตของพื้นผิวไม้ Y = 0.008x + 0.435 (R² = 0.7349) สัมประสิทธิ์แรงเสียดทานสถิตย์ของพื้นผิวยาง Y = 0.0188x + 0.3331 (R² = 0.861) รูปที่ 9 Effect of moisture content on coefficient of friction (aluminium, wood, rubber) . (kernel) 4.สรุปผลการทดลอง 1) มวลลูกกระวาน 100 เมล็ด ทั้งเมล็ดจะมีค่าเพิ่มขึ้นจาก 46.45 กรัม ถึง 49.45 กรัม เมล็ดในมีค่าเพิ่มขึ้นจาก 20.94 กรัม ถึง 23.11 กรัม ความเป็นทรงกลม ทั้งเมล็ดมีค่าเพิ่มขึ้นจาก 0.94 ถึง 0.96 เมล็ดในมีค่าเพิ่มขึ้นจาก 0.72 ถึง 0.74 โดยค่าเหล่านี้เพิ่มขึ้นตามความชื้น ทั้งเมล็ด9.27% ถึง 21.27% (wb.) เมล็ดใน 10.03% ถึง 22.03% (wb.) 2) พื้นที่ภาพฉายของลูกกระวาน ทั้งเมล็ดจะมีค่าเพิ่มขึ้นจาก 1.18 (cm²) ถึง 1.29 (cm²) เมล็ดในจะมีค่าเพิ่มขึ้นจาก 0.72 (cm²) ถึง 0.74 (cm²) และเปอร์เซ็นต์ความพรุน ทั้งเมล็ดจะมีค่าลดลงจาก 78.46% ถึง 51.72 % เมล็ดในจะมีค่าลดลงจาก 51.40% ถึง 45.77 % ความหนาแน่นรวมเพิ่มขึ้นเป็นกราฟเส้นตรง ทั้งเมล็ดจาก 0.24 (g/cm³) ถึง 0.27 (g/cm³) เมล็ดในจาก 0.58 (g/cm³) ถึง 0.63 (g/cm³) และความหนาแน่นเนื้อลดลงเป็นกราฟเส้นตรง ทั้งเมล็ดจาก 1.34 (g/cm³) ถึง0.52 (g/cm³) เมล็ดในจาก 1.19 (g/cm³) ถึง 1.15 (g/cm³) 3) ความเร็วลม ทั้งเมล็ดจะมีค่าเพิ่มขึ้น 9.63 (m/s) ถึง 10.21 (m/s) ส่วนเมล็ดในนั้นมีค่าเปลี่ยนตามสมการ polynomial y = -0.004x²+0.122x+8.731 และค่าสัมประสิทธิ์แรงเสียดทานสถิตย์ทั้งเมล็ดเพิ่มขึ้นตามพื้นที่ผิว พื้นอลูมิเนียม (0.30-0.34) พื้นไม้ (0.24-0.29) และพื้นยาง (0.34-0.49) เมล็ดใน เพิ่มขึ้นตามพื้นที่ผิว พื้นอลูมิเนียม (0.41-0.46) พื้นยาง (0.51-0.78) พื้นไม้ (0.51-0.63) 5. อ้างอิง http://www.rspg.or.th/plants_data/herbs/herbs_06_1.htm http://www.foodietaste.com/FoodPedia_detail.asp?id=14 http://www.changsiam.com/spice/cardamon.html http://www.reddiamondherb.com/th/news.php?art=07 http://sellspices.blogspot.com/2012/05/bay-leaf.html http://www.sarakadee.com/feature/2001/04/klong_bang-luang.htm http://www.oknation.net/blog/print.php?id=126936 http://learningpune.com/?p=9879 http://www.aroiho.com
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดพริกไทยดำ
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดพริกไทยดำ (Effect of moisture content on some physical properties of black papper) ภาควิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ศศิมา เรืองมนัสสุทธิ สุวพัชร ดอกแขมกลาง หทัยชนก วาณิชเจริญทรัพย์ วสันต์ อินทร์ตา บทคัดย่อ การศึกษาสมบัติทางกายภาพของเมล็ดพริกไทยดำ ยี่ห้อไร่ทิพย์ พิจารณาจากปริมาณความชื้นแห้ง ที่เมล็ดพริกไทยดำได้รับในช่วง 7.11%-9.11% ทั้งหมด5ระดับ พบว่า ค่าความยาว (L) ความกว้าง (T) และความหนา (W) มีค่าอยู่ในช่วง 4.72-5.37 mm, 4.39-5.17 mm,4.38-5.11 mmตามลำดับ ตามลำดับ ค่าเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric Mean Diameter , GMD) มีค่าอยู่ในช่วง 4.49 - 5.21 mm ค่าความเป็นทรงกลม (Sphericity) ค่าอยู่ในช่วง 0.95 - 0.97 ค่าน้ำหนัก 1000 เมล็ดของเมล็ดพริกไทยดำ (1000 seeds Mass) มีค่าอยู่ในช่วง 48.39 - 49.09 g ค่าพื้นที่ภาพฉาย (Projected Area) มีค่าอยู่ในช่วง0.17-0.20 cm2 ค่าความหนาแน่นเนื้อ (True density) มีค่าอยู่ในช่วง 1.07-1.08 g/ml และค่าปริมาตรต่อเมล็ด มีค่าอยู่ในช่วง 0.03 -0.06 ml จะพบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มเพิ่มขึ้นแบบเชิงเส้น แต่ในทางกลับกันค่าความหนาแน่นรวม (Bulk density) มีค่าอยู่ในช่วง 0.29 - 0.54 g/ml และค่าความพรุน (Porosity) มีค่าอยู่ในช่วง 72.64-46.54 %และค่าความเร็วสุดท้าย (Terminal Velocity) มีค่าอยู่ในช่วง 9.62 - 9.50 rpm พบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มลดลงแบบเชิงเส้น และเมื่อนำเมล็ดพริกไทยดำ ที่มีความชื้นในระดับที่ต่างกันมาทำการหาค่าสัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) กับพื้นผิววัสดุที่ต่างกัน 4 ชนิดคือ แผ่นยาง แผ่นไม้อัด และ แผ่นอลูมิเนียม พบว่า เมื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มที่เพิ่มขึ้นแบบเชิงเส้น 1.คำนำ พริกไทยดำมีชื่อสามัญว่า Black Piper มีชื่อวิทยาศาสตร์ว่าPiper nigrum Linn วงศ์ Piperaceae เป็นเครื่องเทศที่ชาวไทยและชาวต่างชาติรู้จักและนิยมใช้ในการปรุงอาหารกันอย่างกว้างขวาง ลักษณะทั่วไป พริกไทยเป็นไม้เถาเลื้อยยืนต้น ลำต้นเป็นปล้อง มีรากฝอยตามข้อใช้ในการยึดเกาะ ใบเดี่ยว รูปรี ออกเรียงสลับตามข้อ และกิ่งปลายใบแหลม ขอบใบเรียบ คล้ายใบพลู ดอกสีขาว ออกเป็นช่อตามข้อ ช่อดอกแต่ละช่อมีดอกฝอยประมาณ 70-85 ดอกผลออกเป็นช่อทรงกระบอกกลมยาว ช่อผลเป็นสีเขียว เมื่อแก่เป็นสีเหลืองและแดงภายในมีเมล็ดกลม พริกไทยเป็นพืชที่มีถิ่นกำเนิดแถบอินเดียและเอเชียตะวันออกเฉียงใต้ ในประเทศไทยมีพื้นที่การเพาะปลูกมากที่สุดคือจังหวัดจันทบุรี และเป็นพืช เศรษฐกิจที่สำคัญอีกชนิดหนึ่งของประเทศไทยของเรา คนไทยนั้นได้รู้จักใช้พริกไทยมาประกอบเป็นอาหาร และที่สำคัญยังนำไปเข้าเครื่องยาแผนไทย และได้ทำมาเป็นยารักษาโรค พริกไทยนั้นมีรสชาติ เผ็ด ร้อน ดอกพริกไทย ใช้แก้ตาแดงเนื่องจากความดันโลหิตสูง เมล็ดพริกไทยใช้เป็นยาช่วยย่อยอาหาร ย่อยพิษตก ค้างที่ไม่สามารถย่อยได้ ใช้ขับเสมหะ แก้ท้องอืด บำรุงธาตุ แก้ลมอัมพฤกษ์ แก้ปวดท้อง ขับปัสสาวะ ขับเหงื่อ แก้มุตกิด (ระดูขาว) นอกจากนี้ ในเมล็ดพริกไทยยังมีสารสำคัญซึ่งเป็นสารต้านอนุมูลอิสระ มีฤทธิ์กระตุ้นประสาท และช่วยป้องกันโรคมะเร็ง ใบพริกไทยใช้แก้ลม แก้ปวดมวนท้อง แก้จุกเสียด เถาใช้แก้อุระเสมหะ แก้ลมพรรดึก แก้อติสาร (โรคลงแดง) รากพริกไทย ใช้แก้ปวดท้อง ใช้ขับลมในลำไส้ ช่วยย่อยอาหาร และแก้ลมวิงเวียน ที่สำคัญยังเป็นหนึ่งในยาที่มักนิยมนำไปเข้าเครื่องยาอายุวัฒนะด้วย วัตถุประสงค์ของการทดลอง การทดลองเพื่อศึกษาความชื้นที่มีผลต่อคุณลักษณะภายนอกของเมล็ดเนื่องจากคุณลักษณะดังกล่าวมีความสำคัญ เช่นความสัมพันธ์ระหว่างความชื้นกับน้ำหนักเมล็ด ความสัมพันธ์นี้มีความสำคัญมากต่อกระบวนการผลิต เพราะหากเมล็ดมีความชื้นสูงจะส่งผลให้ผู้ผลิตกำหนดปริมาณจำนวนของเมล็ดที่ได้จากการชั่งน้ำหนักผิดพลาดเนื่องจากการที่เมล็ดมีความชื้นมากจะส่งผลให้น้ำหนักเมล็ดมีค่าสูงเช่นเดียวกัน และ ความสัมพันธ์ระหว่างเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) กับปริมาณความชื้นจากการทดลองทำให้ทราบว่าหากเมล็ดมีความชื้นมากจะส่งผลให้เส้นผ่านศูนย์กลางของเมล็ดเพิ่มขึ้นมากเช่นกันโดยจะส่งผลให้ขนาดของเมล็ดมีขนาดที่ใหญ่ขึ้น อาจทำให้เมล็ดมีขนาดที่ไม่เท่ากัน ซึ่งอาจกล่าวได้ว่า คุณลักษณะต่างๆสามารถกำหนดมาตราฐานของเมล็ดโดยความชื้นเป็นตัวกำหนดที่สำคัญ 2.วัสดุและวิธีการทดลอง 2.1วัสดุ เมล็ดพริกไทยดำ"ไร่ทิพย์"เป็นเมล็ดที่มีแหล่งผลิตมาจาก 62/3 หมู่ 3 ตำบลบางใหญ่ อำเภอบางใหญ่ จังหวัดนนทบุรี 11140 บรรจุในถุงที่มีการปิดผนึกเพื่อไม่ให้เมล็ดได้รับความชื้นหรือสัมผัสกับอากาศภายนอก ซึ่งการทดลองต้องนำเมล็ดที่ได้มาคัดเพื่อเลือกเมล็ดที่มีคุณภาพและมีขนาดใกล้เคียงกัน 2.2การหาความชื้นเริ่มต้น เตรียมภาชนะ โดยใช้กระดาษฟอยล์นำมาพับ จำนวน 3ชิ้น เขียนหมายเลขกำกับแต่ละชิ้นจากนั้นนำถ้วยฟอยล์ไปชั่งน้ำหนัก แล้วจดบันทึกค่า นำเมล็ดพริกไทยดำใส่ลงในถ้วยฟอยล์แล้วนำไปชั่งน้ำหนักอีกครั้ง หาน้ำหนักพริกไทยดำ จากการ นำค่าที่ชั่งได้ในข้อ3ลบกับน้ำหนักฟอยล์เริ่มต้นแล้วบันทึกค่าจากนั้นนำถ้วยฟอยล์ที่ใส่พริกไทยดำทั้ง3ถ้วยเข้าตู้อบ โดยใช้อุณหภูมิ 105องศาเซลเซียสโดยใช้เวลาในการอบ 150 นาที แล้วหาน้ำหนักมวลน้ำในเมล็ดพริกไทยดำ โดยการ นำเมล็ดพริกไทยดำที่ผ่านการอบมาชั่งน้ำหนัก แล้วบันทึกค่า หลังจากนั้นนำเมล็ดพริกไทยดำไปอบอีกครั้งเป็นเวลา 30 นาทีเพื่อนำมาหาน้ำหนักคงที่ของน้ำอีกครั้ง จากการนำเมล็ดพริกไทยดำที่ผ่านการอบครั้งที่2มาชั่งน้ำหนักอีกครั้ง แล้วบันทึกค่าแล้วนำค่าที่ได้มาคำนวณหาค่าความชื้นฐานแห้ง (%) 2.3..การปรับความชื้น เตรียมถุงพลาสติก จำนวน4ถุง สำหรับความชื้น4ระดับ และเมล็ดพริกไทยดำ 4ชุดโดยในแต่ละชุดแบ่งเป็น3กอง กองละ1000เมล็ดพร้อมกับนำถุงพลาสติกไปชั่งน้ำหนัก แล้วบันทึกค่าจากนั้นนำเมล็ดพริกไทยแต่ละกองไปชั่งน้ำหนักแล้วบันทึกค่า จากนั้นนำเมล็ดพริกไทยดำ กองที่1 มาใส่ถุง เพื่อปรับความชื้นโดยหาปริมาณน้ำที่ต้องเติมได้จากสูตร เมื่อ A คือ น้ำหนักเมล็ด B คือ ความชื้นของเมล็ดหลังเติมน้ำ C คือ ความชื้นของเมล็ดก่อนเติมน้ำ นำเมล็ดพริกไทยที่ปรับความชื้นแล้วไปปิดผนึก จากนั้นทำการปรับค่าความชื้นเดิมโดยใน1ถุงใหญ่ จะทำการปรับความชื้นในระดับเดียวกัน 3ครั้ง (เมล็ดพริกไทยดำ3กอง) 2.4..ขนาด.. (Size) ใช้เวอร์เนียคาร์ลิปเปอร์ในการวัดเพื่อหาขนาดของเมล็ดพริกไทยดำเพื่อหาค่า Dimension (ความยาว (L) ความกว้าง (W) และความหนา (T) ) โดย วัดจำนวน 100 เมล็ด 2.5.เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต . (Geometric Mean..Diameter,GMD) คำนวณได้จากการนำค่า L,W,T ที่ได้จากการวัดขนาดของเมล็ดพริกไทยดำ จำนวน 100 เมล็ด แทนลงในสูตร 2.6.น้ำหนัก.100.เมล็ด.. (100..seeds..Mass) นำเมล็ดพริกไทยดำที่ผ่านการคัดมาจำนวน 100 เมล็ด แล้วนำไปชั่งบนเครื่องชั่งดิจิตอล ที่มีค่าความละเอียดอยู่ที่ 0.01 กรัม โดยแต่ละความชื้นต้องนำไปชั่งจำนวน 3 ครั้งเพื่อคำนวณหาค่าเฉลี่ย 2.7.พื้นที่ภาพฉาย.. (Projected..area) พื้นที่ภาพฉาย (projected area) หมายถึง พื้นที่ (area) ที่ได้จากการฉายภาพวัสดุลงบนแผ่นระนาบ ทำได้โดยการถ่ายภาพเมล็ดพริกไทยดำจำนวน 50 เมล็ดทุกๆความชื้นพร้อมสเกลที่ทราบพื้นที่ในการทดลองใช้พื้นที่1cm² เพื่อใช้ในการเปรียบเทียบสัดส่วน โดยใช้โปรแกรม Adobe Photoshop Cs3 Extended ในการวิเคราะห์หาจำนวน pixel ของภาพ แล้วหาพื้นที่ภายฉาย จากสูตร 2.8 ความหนาแน่นรวม (Bul density , ρb) ความหนาแน่นรวม (bulk density) เป็นสมบัติทางกายภาพ (physical properties) ของวัสดุ หมายถึง ความหนาแน่น (density) ของวัสดุปริมาณมวล (bulk material) ทำการทดลองโดยกราเตรียมภาชนะทรงกระบอกที่ทราบปริมาตร และปรับระดับกรวยให้มีความสูงห่างจากแก้ว 25cm นำเมล็ดพริกไทยดำแต่ละความชื้นมากรอกใส่กรวย จากนั้นน้ำไม้บรรทัดมากดตรงกลางเพื่อนเกลี่ยเมล็ดที่เหนือขอบปากแก้วออก ความหนาแน่นรวมหาได้จากสูตร เมื่อ..Mb คือ..น้ำหนักรวม-น้ำหนักภาชนะ (g) Vb คือ..ปริมาตรภาชนะ (ml) 2.9 ความหนาแน่นเนื้อ (True density) และปริมาตรต่อเมล็ด (Volume per seed) ความหนาแน่นเนื้อ (solid density) อาจเรียกว่า ture density หรือ absolute density หมายถึง ความหนาแน่น (density) ของเนื้อวัสดุล้วนๆ ไม่รวมรูพรุน (pore) ในเนื้อวัสดุ หรือช่องว่างระหว่างชิ้นวัสดุ หากรวมช่องว่างระหว่างวัสดุ จะเป็นความหนาแน่นรวม (bulk density) วิธีการหาความหนาแน่นเนื้อ นำ Pychometer ขนาด 75 ml. ไปชั่งน้ำหนักและบันทึกค่า เติม เฮกเซน ลงใน Pychometer จนเต็ม นำไปชั่งน้ำหนักจากนั้นเทออก แล้วนำค่าที่ได้ไปคำนวณหาค่า ความหนาแน่นของเฮกเซน จากนั้นนำเมล็ดพริกไทยดำจำนวน 150 เมล็ดใส่ลงในขวด Pychometer แล้วนำไปชั่งน้ำหนักจดค่าที่ได้ เติมเฮกเซนลงไป นำไปชั่งน้ำหนักเพื่อหาค่า ความหนาแน่นของเมล็ดพริกไทยดำ หาความหนาแน่นเนื้อจากสมการ เมื่อ..MS คือ น้ำหนักรวมของเมล็ด (g) V คือ ปริมาตรต่อหนึ่งเมล็ด (ml) 2.10.ความพรุน.. (Porosity) ความพรุนคือค่าที่แสดงปริมาณช่องว่างที่มีอยู่เป็นอัตราส่วนระหว่างความหนาแน่นเนื้อต่อความหนาแน่นรวม ซึ่งสามารถคำนวณได้จากสมการ 2.11.ความเร็วสุดท้าย.. (Terminal..Velocity) ความเร็วสุดท้าย (terminal velocity) เป็นสมบัติทางกายภาพของวัสดุ ทางอากาศพลศาสตร์ (Aro dynamics) การทดลองโดย การนำเมล็ดในแต่ละความชื้นมาใส่ในท่อ อะคริลิคแล้วปรับหาความเร็วลมที่ทำให้เมล็ดพริกไทยดำลอยนิ่งในอากาศ จดบันทึกค่าความเร็วมอเตอร์ และอุณหภูมิ 2.12ค่าสัมประสิทธิ์ความเสียดทานสถิต (Static..coefficient..of..friction) สัมประสิทธิ์ความเสียดทานสถิตคือค่าที่สามารถวัดได้จากการสุ่มเมล็ด มาจำนวน 10 เมล็ด แล้วนำมาวางบนพื้นผิววัสดุต่างกัน 3 ชนิด ได้แก่ พื้นผิวไม้อัด พื้นผิวอลูมิเนียม และพื้นผิวยาง ซึ่งพื้นผิวเหล่านี้ติดอยู่บนเครื่องวัดมุมเอียงจากนั้นให้ค่อยๆยกพื้นผิวด้านใดด้านหนึ่งขึ้นจนกระทั่งเมล็ดเริ่มกลิ้งไถลลงอย่างอิสระ อ่านค่ามุมที่เมล็ดเริ่มกลิ้งไถล โดยทำจนกระทั่งครบ 10 เมล็ด ทั้ง 3 พื้นผิว ในทุกๆความชื้น ซึ่งสามารถคำนวณหาสัมประสิทธิ์ความเสียดทานสถิต รูปที่ 1 การวัดสัมประสิทธิ์ความเสียดทานสถิต ตารางที่ 1สมบัติทางกายภาพของเมล็ดพริกไทยดำที่ความชื้น7.11 % (w.b.) 3. ผลการทดลองและวิจารณ์ รูปที่.2..ความสัมพันธ์ระหว่างปริมาณความชื้นกับเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าเส้นผ่านศูนย์กลางเฉลี่ยจะมีค่าเพิ่มขึ้นเมื่อมีค่าความชื้นสูงขึ้นสามารถอธิบายได้ว่า เมื่อเมล็ดมีค่าความชื้นเพิ่มขึ้นจะส่งผลให้ขนาดของเมล็ดมีขนาดที่ใหญ่ขึ้นทั้งด้าน ความกว้าง ความยาวและความหนา จึงส่งผลให้ค่าเส้นผ่านสูญกลางมีค่ามากขึ้นเช่นกัน ซึ่งตรงกับการทดลองของข้าวบาร์เลย์ (C.A. Sologubik May 2013,) , safflower (Baumleret al.,2006) และ caper seed (Dursun and Dursun ,2005) ,niger ( W.K. Solomon, A.D. Zewdu2009) รูปที่ 3 ความสัมพันธ์ระหว่างปริมาณความชื้นกับความเป็นทรงกลม จากกราฟความสัมพันธ์แสดงให้เห็นว่าความเป็นทรงกลม (Sphericity) ของเมล็ดพริกไทยดำจะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) สามารถอธิบายได้ว่า เมื่อเมล็ดพริกไทยดำได้รับความชื้นเพิ่มขึ้นจะส่งผลให้ขนาดของเมล็ดพริกไทยดำใหญ่ขึ้น ทำให้ค่าเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GDM) มีค่าเพิ่มขึ้น ซึ่งตรงกับผลการวิจัยของ sunflower ( Gupta and Das ,1997) , Hemp seed (Sacilik et al. (2003) , safflower (Baumler et al.,2006) ,niger ( W.K. Solomon, A.D. Zewdu2009) รูปที่.4.ความสัมพันธ์ระหว่างปริมาณความชื้นกับพื้นที่ภาพฉาย จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าพื้นที่ภาพฉาย (Projected Area) ของเมล็ดพริกไทยดำมีแนวโน้ม จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) สามารถอธิบายได้ว่า เมื่อเมล็ดพริกไทยดำได้รับความชื้นเพิ่มมากขึ้นจะส่งผลให้ขนาดของเมล็ดมีขนาดที่ใหญ่ขึ้น ทำให้ค่าพื้นที่ภาพฉายที่ได้มีค่ามากขึ้น ซึ่งตรงกับผลการวิจัยของ sunflower ( Gupta and Das ,1997) ,Hemp seed (Sacilik et al. (2003) , safflower (Baumler et al.,2006) ,niger ( W.K. Solomon, A.D. Zewdu2009) รูปที่.5 ความสัมพันธ์ระหว่างปริมาณความชื้นกับน้ำหนัก.1000.เมล็ด จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าน้ำหนัก 1000 เมล็ด ของเมล็ดพริกไทยดำ จะเพิ่มขึ้นเมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) สามารถอธิบายได้ว่าเมื่อเมล็ดพริกไทยดำได้รับความชื้นเพิ่มขึ้น จะส่งผลให้เมล็ดมีน้ำหนักที่เพิ่มขึ้นด้วย ซึ่งสอดคล้อง กับผลการวิจัยของ ถั่วเขียว[Vigna.radiata. (L.) ...Wilczek..,safflower (Baumleret al.,2006) ,niger (W.KSolomon, A.D. Zewdu2009) ,Green wheat รูปที่.6.ความสัมพันธ์ระหว่างปริมาณความชื้นกับความหนาแน่นรวม จากกราฟความสัมพันธ์แสดงให้เห็นว่าความหนาแน่นรวม (Bulk density) ของเมล็ดพริกไทยดำ จะลดลง เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผกผัน) สามารถอธิบายได้ว่า เมื่อเมล็ดพริกไทยดำได้รับความชื้นเพิ่มขึ้น ส่งผลให้เมล็ดพริกไทยดำมีขนาดที่ใหญ่ขึ้น จึงมีมวลความจุลดลง จากความสัมพันธ์ D=M/V เมื่อมวลลดลงจะส่งผลให้ความหนาแน่นรวมลดลง ซึ่งสอดคล้องกับผลการวิจัยของ ข้าวบาร์เลย์ (C.A. Sologubik May 2013,) ,safflower (Baumleret al.,2006) ,niger ( W.K. Solomon, A.D. Zewdu2009) รูปที่.7.ความสัมพันธ์ระหว่างปริมาณความชื้นกับความหนาแน่นเนื้อ จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าความหนาแน่นเนื้อ ของเมล็ดพริกไทยดำ จะเพิ่มขึ้นเมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) สามารถอธิบายได้ว่า เมื่อเมล็ดพริกไทยดำได้รับความชื้น จะส่งผลให้ขนาดของเมล็ดพริกไทยดำเพิ่มขึ้น ทำให้เมล็ดมีปริมาตรเพิ่มขึ้นด้วยเช่นกัน ซึ่งสอดคล้องกับผลการวิจัยของ Green wheat และ sweet corn seed รูปที่.8.ความสัมพันธ์ระหว่างปริมาณความชื้นกับปริมาตรต่อเมล็ด จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าปริมาตรต่อเมล็ด (Volume per seed) ของเมล็ดพริกไทยดำ จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้นแปรผันตรง สามารถอธิบายได้ว่า เมล็ดพริกไทยดำมีขนาดและน้ำหนักเพิ่มขึ้นจึงทำให้ปริมาตรต่อเมล็ดเพิ่มขึ้น ซึ่งสอดคล้อง กับผลการวิจัย ของข้าวบาร์เลย์ (C.A. Sologubik May 2013) ,niger ( W.K. Solomon, A.D. Zewdu2009) รูปที่.9.ความสัมพันธ์ระหว่างปริมาณความชื้นกับความพรุนกับปริมาณความชื้น จากกราฟพบว่าเมื่อมีค่าความชื้นเพิ่มขึ้นจะส่งผลให้ค่าความพรุนลดลง สามารถอธิบายได้ว่า เมื่อมีความชื้นเพิ่มขึ้นจะส่งผลให้ค่าความหนาแน่น รวมลดลง และค่าความพรุนจะหาได้จากสูตร ซึ่งเมื่อค่าความหนาแน่นรวมลดลงจะส่งผลให้ค่าความพรุนลดลงเช่นกัน ซึ่งสอดคล้อง กับผลการวิจัยของข้าวบาร์เลย์ (C.A. Sologubik May 2013) ,niger ( W.K. Solomon,..A.D.Zewdu2009) รูปที่.10.ความสัมพันธ์ระหว่างปริมาณความชื้นกับความเร็วสุดท้าย จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าความเร็วสุดท้าย (Terminal Velocity) ของเมล็ดพริกไทยดำ จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) ซึ่งสอดคล้อง กับผลการวิจัย ของข้าวบาร์เลย์ (C.A. Sologubik May 2013,) , ถั่วลิสง (C. Aydin,2006) , sunflower seeds,niger ( W.K. Solomon, A.D. Zewdu2009) รูปที่.11.ความสัมพันธ์ระหว่างปริมาณความชื้นกับสัมประสิทธิ์ความเสียดทานสถิต จากกราฟแสดงความสัมพันธ์แสดงให้เห็นว่าสัมประสิทธิ์ความเสียดทานสถิต (Static friction coefficient) ของเมล็ดพริกไทยดำ จะเพิ่มขึ้น เมื่อปริมาณความชื้นเพิ่มขึ้น (แปรผันตรง) ซึ่งจากเปรียบเทียบเส้นกราฟพบว่าสัมประสิทธิ์ความเสียดทานสถิต ของ ยางมีค่ามากที่สุด และสัมประสิทธิ์ความเสียดทานสถิต ของไม้มีค่าน้อยที่สุด ซึ่งสอดคล้อง กับผลการวิจัยของ ข้าวบาร์เลย์ (C.A. Sologubik May 2013,) ,niger ( W.K. Solomon, A.D. Zewdu2009) 4.สรุปผลการทดลอง จากการทดลองพบว่าค่าความยาว ความหนา และความกว้าง มีความสัมพันธ์แบบเป็นเชิงเส้นตรง กับค่าความชื้นที่เพิ่มขึ้นเช่นเดียวกับเส้นผ่านศูนย์กลางเฉลี่ย (GMD) , ความเป็นทรงกลม (Sphericity) .น้ำหนัก1000เมล็ด (1000 seeds mass ) ,พื้นที่ภาพฉาย (Projected area) ,ความหนาแน่นเนื้อ ( True density ) และปริมาตรต่อหนึ่งเมล็ด (Volume per seed) นอกจากนี้จากการทดลองพบว่าค่าสัมประสิทธิ์แรงเสียดทาน (µ) มีค่าเพิ่มขึ้นเมื่อความชื้นเพิ่มขึ้น โดยพื้นผิวยาง มีค่าสัมประสิทธิ์แรงเสียดทานสูงที่สุด ตามด้วยพื้นผิวอะลูมิเนียมและพื้นผิวไม้ตามลำดับแต่ในทางกลับกันจากการทดลองพบว่าความหนาแน่นรวม ( Bulk density) ,เปอร์เซ็นต์ความพรุน (Porosity) .ความเร็วสุดท้าย (Terminal Velocity) มี มีค่าลดลงเมื่อค่าความชื้นเพิ่มขึ้น อ้างอิง [ออนไลน์]..ปรากฏ:https://sites.google.com/site/krunoinetwork/phrik -thiyda-phrik-thiy-khaw http://www.phtnet.org/download/phtic- seminar/508.pdf คณะเภสัชศาสตร์มหาวิทยาลัยขอนแก่น"สารพิเพอรีน" (Piperine) ในเมล็ดพริกไทยดำ"อ้างใน http://www.thaihealth.or.th/healthcontent/ healthtips/21426 Amin, M. N., Hossain, M. A., & Roy, K. c. (2004) . Effect of moisture content on some physical properties of lentil seeds. Journal of Food Engineering, 65, 83-87. Moisture-dependent physical properties of niger Industrial Crops and Products, Volume 29, Issue 1, January 2009, Pages 165-170 W.K. Solomon, A.D. Zewdu Physical properties of sunflower -seeds. Journal of Agricultural Engineering Research, 66, 1-8. Sacilik, K., ÖztuÜrk, R., & Keskin, R. (2003) . Some physical -properties of hemp seed. Biosystems Engineering, 86 (2) , 191-198................................... BaÜmler, E., Cuniberti, A., Nolasco, S. M., & Riccobene, I. C. (2006) .Moisture dependent physical and compression properties of safflower seed. Journal of Food Engineering, 73, -134-140. Industrial Crops and Products, Volume 43, May 2013,.Pages762-767 C.A. Sologubik, L.A. Campañone, A.M. Pagano, M.C. Gely
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำ
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำ (Effect of moisture content on some physical properties of Black Glutinous rice seeds) ภาควิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง กันต์รักเรืองเดช, จตุพรจันทสุรวงศ์, อภิณัฐสีตลกาญจน์, วสันต์ อินทร์ตา บทคัดย่อ การศึกษาสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำ (Black Glutinous rice seeds) พิจารณาจากความชื้นฐานแห้งที่เมล็ดข้าวเหนียวดำได้รับในช่วง 9.1%-21.1% ทั้งหมด5 ระดับพบว่า [ค่าขนาด (Size) ความยาว (L) ความหนา (M) ความกว้าง (T) ] มีค่าอยู่ในช่วง8.66mm-6.58mm,3.24mm-2.54mm,2.21mm-1.58mmค่าเส้นผ่านศูนย์กลางเฉลี่ยเรขาคณิต (Geometric Mean Diameter, GMD) มีค่าอยู่ในช่วง3.77mm-3.14mmค่าความเป็นทรงกลม (Sphericity) มีค่าอยู่ในช่วง 51.48%-39.10% ค่าน้ำหนัก1000 เมล็ดมีค่าอยู่ในช่วง 29.28g-29.50 g และค่าปริมาตรต่อเมล็ดมีค่าอยู่ในช่วง 20.659mm3-22.312 mm3 จะพบว่าเทื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มเพิ่มขึ้นแบบเชิงเส้น ในทางกลับกันค่าความหนาแน่นจริง (True density) มีค่าอยู่ในช่วง 1.4392g/ml-1.3981 g/ml จะพบว่าเมื่อค่าความชื้นเพิ่มขึ้นกราฟมีแนวโน้มจะลดลงแบบเชิงเส้น เมื่อนำเมล็ดข้าวเหนียวถั่วดำที่ความชื้นต่างกันมาหาค่ามุมตั้งต้น (Angle of repose) และ สัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction ) กับพื้นที่ผิวต่างกันคือ ไม้ อะลูมิเนียม และ ยาง จะพบว่าเมื่อระดับความชื้นเพิ่มมากขึ้นกราฟของพื้น ไม้ และ อลูมิเนียมมีแนวโน้มเพิ่มขึ้นแบบเชิงเส้น ในขณะทีพื้น ยาง ลดลงแบบเชิงเส้น 1.บทนำ ข้าวเหนียวดำ (Black Glutinous rice) ชื่อวิทยศาสตร์ Oryza sativa var. glutinosa เป็นข้าวที่มีลักษณะเด่นคือการติดกันเหมือนกาวของเมล็ดข้าวที่สุกแล้ว ปลุกมากทางภาคอีสานของประเทศไทยและ ประเทศลาว ข้าวเหนียวดำจะมีสารอาหาร คือ "โอพีซี" (OPC) มีสรรพคุณช่วยชะลอการแก่ก่อนวัย และความเสื่อม ถอยของร่างกาย โดยสารโอพีซีที่พบในข้าวเหนียวดำ เป็นสารชนิดเดียวกับสารสกัดที่ได้ จากองุ่นดำองุ่นแดง เปลือกสน โอพีซี หรือ OligomericProanthocyanidin Complexes (OPCs) เป็นสารที่พบในเมล็ด ดอกและเปลือก ของผักผลไม้เปลือกแข็ง เป็นหนึ่งในสารตระกูลฟลาโวนอยด์ ถูกค้นพบโดย ศาสตราจารย์ ดอกเตอร์ แจ๊ค มาสเควอริเย (Dr. Jack Masquelier) ชาวฝรั่งเศส เป็นผู้ค้นคว้าและคิดค้นการสกัดสาร OPC ให้มีความบริสุทธิ์โดยปราศจากสารปลอมปนพวกแทนนิน (สารรสฝาด ที่มีโมเลกุลใหญ่กว่า OPC) อันที่จริง บทบาทเดิมของ OPC คือ เป็นสารต้านอนุมูลอิสระที่เคลื่อนที่ได้คล่องแคล่ว มีอนุภาพสูงกว่าวิตามินซี 20 เท่า และสูงกว่าวิตามินอีกว่า 50 เท่า จึงได้รับขนานนามว่า Super antioxidant นอกจากนี้เมื่อทาน OPC ร่วมกับวิตามินซี จะช่วยเสริมฤทธิ์ให้วิตามินซีที่ถูกใช้ให้คืนสภาพกลับมาใช้ใหม่ได้ บางคนจึงเรียก OPC ว่าเป็น Vitamin C cofactor อีกทั้งยังสามารถละลายได้ทั้งในน้ำและในน้ำมัน จึงสามารถแทรกซึมไปได้ทุกส่วนของเซลล์ร่างกาย แม้กระทั่งเซลล์สมอง เพราะสามารถผ่านเยื่อหุ้มหลอดเลือดสมองไปยังเนื้อสมองได้ (Blood Brain Barrier) จึงน่าจะสามารถเป็นอาหารเสริมที่ดูแลร่างกายแบบองค์รวมที่ดีตัวหนึ่ง สมบัติทางกายภาพของเมล็ดข้าวเหนียวดำต่อผลของความชื้น ได้แก่ ขนาดของเมล็ด (Size) เส้นผ่านศูนย์กลางเฉลี่ย (Geometric Mean Diameter) ค่าความเป็นทรงกลม (Sphericity) ปริมาตร (Volume) มวล 1000เมล็ด (Mass) ความหนาแน่นจริง (True density) ความหนาแน่นรวม (Bulk density) ความพรุน (Porosity) และ สัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) การศึกษาสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำนี้มีความสำคัญ ต่อการออกแบบเครื่องจักร และกระบวนการผลิตแปรรูป เช่นการคัดแยก การทำความสะอาด จนถึงการเก็บรักษา ตัวแปรต่างๆในการทดลอง L ด้านที่มีเส้นผ่านศูนย์กลางยาวที่สุด (mm) W เส้นผ่านศูนย์กลางยาวที่สุดที่ตั้งฉากกับ L (mm) T ด้านเส้นผ่านศูนย์กลางยาวที่สุดที่ตั้งฉากกับ W และ L (mm) GMD ค่าเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (mm) Sp ค่าความเป็นทรงกลม Pr ค่าความพรุน (%) %Mcw.b. ค่าเปอร์เซ็นต์ความชื้นฐานเปียก (%Wb) MwMi ปริมาณน้ำที่ระดับความชื้นเริ่มต้น (g) Mb น้ำหนักเมล็ด (น้ำหนักรวม-น้ำหนักภาชนะ) (g) M น้ำหนักเฮกเซน (g) Ms น้ำหนักรวมของเมล็ด (g) µ สัมประสิทธิ์ความเสียดทานสถิต ρb ความหนาแน่นรวม (g/ml) ρs ความหนาแน่นเนื้อ (g/ml) ρ ความหนาแน่นเฮกเซน (g/ml) V ปริมาตรต่อหนึ่งเมล็ด (ml) Vb ปริมาตรภาชนะ (ml) Mi ค่าความชื้นเริ่มต้น (%Wb) Mf ค่าความชื้นที่ต้องการ Wi น้ำหนักถั่ว 1,000 เมล็ด (g) Proj พื้นที่ภาพฉาย (cm2) θ ค่ามุม (องศา 2.วัตถุดิบและวิธีการทดลอง 2.1 การเตรียมวัตถุดิบ เมล็ดข้าวเหนียวดำที่ใช้ในการทดลองผลิตโดยบริษัทไร่ทิพย์บรรจุในถุงผนึกอย่างดีจะถูกนำมาคัดแยกเมล็ดที่ไม่สมบูรณ์ออก เพื่อให้ได้เฉพาะเมล็ดที่สมบูรณ์สำหรับใช้ในการทดลอง 2.2 หาความชื้นเริ่มต้น เมล็ดข้าวเหนียวดำจะถูกนำมาหาค่าความชื้นเริ่มต้นด้วยการนำเมล็ดตัวอย่างจำนวนหนึ่งมาแบ่งใส่ไว้ในถ้วยฟอยล์ 3 ถ้วย ทำการบันทึกค่าน้ำหนักของแต่ละถ้วย จากนั้นจึงนำเข้าอบในเตาอบที่อุณหภูมิ 105 เป็นระยะเวลา 120 นาที จึงนำเมล็ดตัวอย่างออกมาชั่งน้ำหนักเพื่อทราบค่ามวลของน้ำ และนำตัวอย่างเข้าไปอบในเตาอบที่อุณหภูมิ เดิมอีกรอบ เป็นเวลา 30 นาที และนำเมล็ดตัวอย่างออกมาชั่งน้ำหนักอีกครั้งเพื่อหาค่าน้ำหนักคงที่ของน้ำ และนำค่าที่ได้มาทำการคำนวณหาค่าความชื้นทั้ง ฐานแห้ง ตามสมการดังนี้ 2.3 การปรับความชื้น เมื่อคำนวณหาค่าเปอร์เซ็นต์ความชื้นเริ่มต้นแล้วนำเมล็ดตัวอย่างชุดละ1000เมล็ดปรับค่าเปอร์เซ็นต์ความชื้น โดยแบ่งเป็น 4 ระดับโดยจะเพิ่มความชื้นครั้งละ3%คำนวณหาระดับปริมาณน้ำที่ต้องเติมเพื่อให้ได้ค่าเปอร์เซ็นต์ความชื้นที่ต้องการเติมน้ำลงในถุงเก็บความชื้นพร้อมตัวอย่างในแต่ละชุดการทดลองจากนั้นปิดปากถุงโดยใช้ vacuum sealจากนั้นจึงนำถุงเมล็ดตัวอย่างทั้ง 4 ถุงไปแช่ในตู้แช่ปรับความเย็นที่อุณหภูมิ 5 เป็นเวลา 1 สัปดาห์ โดยในระยะเวลาดังกล่าวถุงเมล็ดตัวอย่างจะถูกเขย่าทุกๆ 2 วันเพื่อกระจายความชื้นให้ทั่วถึง มวลน้ำที่เพิ่มเข้าไป 2.4 คุณสมบัติทางกายภาพ 2.4.1ขนาด (Size) เมล็ดข้าวเหนียวดำจำนวน 100 เมล็ดจะถูกนำมาวัดค่า ความยาว ความกว้างและความหนา ด้วย เวอร์เนียร์คาลิปเปอร์ 2.4.2 ศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric mean Diameter, GMD) คำนวณหาขนาดเส้นผ่านศูนย์กลางเฉลี่ยเรขาคณิตโดยการนำค่า L, M, T ที่หาได้จากการวัดขนาดของเมล็ดข้าวเหนียวดำจำนวน 100 เมล็ดมาคำนวณจากสมการ 2.4.3 ความเป็นทรงกลม ความเป็นทรงกลมสามารถคำนวณได้จากสมการ 2.5 พื้นที่ภาพฉาย เตรียมเมล็ดข้าวเหนียวดำที่ความชื้นที่ต้องการนำเมล็ดข้าวที่เตรียมมาเรียงบนกระดาษที่ตัดกับสีของเมล็ดถข้าวเหนียวดำ จำนวนความชื้นละ 50 เมล็ด ถ่ายรูปเมล็ดถข้าวที่เรียงแล้วโดยตั้งกล้องให้ตักฉากกับพื้นผิว นำไปลงในโปรแกรม PhotoShopเพื่อ Cropภาพหา Pixelของภาพ 1x1จากนั้น Cropภาพเมล็ดแต่ละเมล็ดหา Pixelนำมาคำนวณหาพื้นที่ของเมล็ดถั่วขาวจากสูตร 2.6 ความหนาแน่นจริง (True density,ƿs) การหาความหนาแน่นจริงของเมล็ดข้าวเหนียวดำโดยใช้หลักการแทนที่ของของเหลวโดยใช้ขวด Pyrometer และของเหลวที่ใช้คือ Hexane โดยhexane มีแรงตึงผิวต่ำไม่ซึมเข้าในเมล็ดระหว่างการทดลองหาความหนาแน่นของHexane โดยการบรรจุ Hexane ในขวด pyrometer ที่ทราบปริมาตรแน่นอนจนเต็มแล้วชั่งน้ำหนักจากนั้นนำเมล็ดข้าวเหนียวดำมาใส่ในขวดแล้วนำไปชั่งน้ำหนักอีกครั้งจะสามารถหาค่าปริมาตรได้จากสมการ แล้วนำค่าปริมาตรที่ได้มาหาค่าความหนาแน่นจริงได้จากสมการ 2.7 ความหนาแน่นรวม (Bulk density, ƿb) ความหนาแน่นรวมคืออัตราส่วนระหว่างมวลกับปริมาตร หาได้จากการนำเมล็ดข้าวเหนียวดำมาใส่ภาชนะที่ทราบปริมาตรจรเต็มพอดี จากนั้นปาดส่วนที่เกินออกให้เสมอภาชนะแล้วนำไปชั่งน้ำหนักด้วยเครื่องชั่งดิจิตอล โดยทำการทดลอง ซ้ำ 3 ครั้ง ความหนาแน่นรวมหาได้จากสมการ 2.8 ความพรุน (porosity) ความพรุนคือค่าที่แสดงปริมาณช่องว่างที่มีอยู่ในเมล็ดข้าวเหนียวดำสามารถหาได้จากสมการ 2.9 การวัดพื้นที่เอียง วัดพื้นที่เอียงโดยเตรียมเมล็ดข้าวเหนียวดำที่ความชื้นที่ต้องการคัดเลือกเมล็ดข้าวเหนียวดำจำนวน 10 เมล็ด นำเมล็ดข้าวเหนียวดำทีคัดเลือกไว้ไปทดสอบพื้นที่เอียง 3 แบบ คือ แผ่นไม้ แผ่นยาง และแผ่นอลูมิเนียม 2.10 ความเร็วสุดท้าย วัดความเร็วสุดท้ายโดยเตรียมเมล็ดข้าวเหนียวดำที่ความชื้นที่ต้องการนำเมล็ดข้าวเหนียวดำที่เตรียมไว้ใส่ในเครื่องปรับความเร็วรอบของมอเตอร์พอให้ถั่วลอยนำเครื่องวัดความเร็วลมวัดค่าความเร็วลมที่เมล็ดถั่วลอย รูปที่ 1 Terminal velocity measurement by Anemometer ตารางที่ 1 แสดงคุณสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำที่ความชื้นเริ่มต้น 3.ผลที่ได้และวิจารณ์ผลการทดลอง จากการศึกษาเปรียบเทียบคุณสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำที่ความชื้นแตกต่างกัน 5 ระดับ 3.1 ขนาด ขนาดของเมล็ดข้าวเหนียวดำ ด้าน L,M,T จะมี ค่ามากขึ้นเมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) ดัง รูปที่2 L = 0.0032Mc + 7.5792 (R² = 0.6042) M= 0.0046Mc+ 2.8104 (R² = 0.7494) T= 0.0180Mc + 1.6023 (R² = 0.9928) เนื่องจากแป้งในเมล็ดข้าวเหนียวดำดูดน้ำเข้าไปทำให้เมล็ดพองตัวขึ้นซึ่งตรงกับผลการทดลองของjatropha seed (D.K. Garnayak et al.,2008) รูปที่ 2 ความสัมพันธ์ระหว่าง ขนาด กับ ความชื้น 3.2 ตวามเป็นทรงกลม ความเป็นทรงกลมของเมล็ดข้าวเหนียวดำจะเพิ่มขึ้นเมื่อระดับความชื้นเพิ่มขึ้น (แปรผันตรง) ดัง รูปที่3 Sp= 0.152Mc+ 42.975 (R² = 0.9741) เนืองจากความเป็นทรงกลมจะมีความสัมพันธ์กับขนาด ความกว้าง ความยาว ความหนา ของเมล็ดข้าวเหนียวดำตามสมการการหาความเป็นทรงกลมซึ่งมีความชันของกราฟมากกว่าผลการทดลองของ green wheat (Majdi A. Al-Mahasneh&Taha M. Rababah, 2007) รูปที่ 3 ความสัมพันธ์ระหว่างความเป็นทรงกลมกับความชื้น 3.3 พื้นที่ภาพฉาย พื้นที่ภาพฉายจะมีค่ามากขึ้นเมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) ดัง รูปที่4 A= 0.0025Mc + 0.1603 (R² = 0.9793) เนื่องจากแป้งในเมล็ดข้าวเหนียวดำดูดน้ำเข้าไปทำให้เมล็ดพองตัวขึ้นซึ่งความชันของกราฟน้อยกว่าผลการทดลองของlinseed (Selvi et al.,2006) รูปที่ 4 ความสัมพันธ์ระหว่างพื้นที่ภาพฉายกับความชื้น 3.4 ความหนาแน่นจริง ความหนาแน่นจริงของเมล็ดข้าวเหนียวดำจะลดลงเมื่อความชื้นเพิ่มขึ้น (แปรผกผัน) ดัง รูปที่5 Ƿs = -0.0023Mc + 1.4505 (R² = 0.9997) เนื่องจากความชื้นที่เพิ่มขึ้นเมล็ดเกิดการพองตัว ทำให้มีปริมาตรเพิ่มขึ้น แต่มวลเพิ่มขึ้นเล็กน้อยเนื่องจากข้าวเหนียวดำมี อะไมโลสและอะไมโลแพคตินซึ่งเป็นสารกึ่งผลึก ทำให้ดูดซึมน้ำเข้าไปได้น้อยมากที่อุณหภูมิห้องทำให้มีปริมาตรเพิ่มขึ้น แต่มวลเพิ่มขึ้นเล็กน้อยซึ่งมีความชันของกราฟมากกว่าผลการทดลองของgreen wheat (Majdi A. Al-Mahasneh&Taha M. Rababah, 2007) รูปที่ 5 ความสัมพันธ์ระหว่างความหนาแน่นจริงกับความชื้น 3.5 ความหนาแน่นรวม ความหนาแน่นรวมจะมีค่าลดลงเมื่อความชื้นเพิ่มขึ้น (แปรผกผัน) ดัง รูปที่6 Ƿb= -0.0053Mc + 0.8806 (R² = 0.9845) เพราะเมล็ดที่พองตัวขึ้น ทำให้มีปริมาตรเพิ่มขึ้น แต่มวลเพิ่มขึ้นเล็กน้อยซึ่งมีความชันของกราฟมากกว่าผลการทดลองของgreen wheat (Majdi A. Al-Mahasneh&Taha M. Rababah,2007) รูปที่ 6 ความสัมพันธ์ระหว่างความหนาแน่นรวมกับความชื้น 3.6 ความพรุน ความพรุนจะมีค่าเพิ่มขึ้นเมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) ดัง รูปที่7 ɛ = 0.2846Mc + 39.1916 (R² = 0.9721) เนื่องจากเมล็ดพองตัวขึ้น ช่องว่างของรูพรุนก็ขยายตัวขึ้นซึ่งมีความชันของกราฟมากกว่าผลการทดลองของjatropha seed (D.K. Garnayak et al.,2008) รูปที่ 7ความสัมพันธ์ระหว่างความพรุนกับความชื้น 3.7 ระหว่างสัมประสิทธ์ของแรงเสียดทานสถิต สัมประสิทธ์ความเสียดทานสถิตต่อพื้นไม้และพื้น อะลูมิเนียม มีค่าเพิ่มขึ้น เมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) ส่วนค่าสัมประสิทธ์ความเสียดทานสถิตต่อพื้นยางจะมีค่าลดลงเมื่อปริมาณควาชื้นเพิ่มขึ้น (แปรผกผัน) ดัง รูปที่8 Rubber: µ= -0.0148x + 0.865 (R² = 0.9651) Wood: µ= 0.0086x + 0.4368 (R² = 0.9985) Aluminum: µ= 0.0040x + 0.4703 (R² = 0.9517) เนื่องจากความชื้นที่เพิ่มขึ้นทำให้เกิดฟิล์มความชื้นที่ผิวสัมผัสระหว่างเมล็ดและตัวพื้นจึงมีแรงเสียดทานมากขึ้นค่าสัมประสิทธิ์ความเสียดทานสถิตย์จึงเพิ่มสูงขึ้น ซึ่งผลที่ได้ตรงกับneem nuts (Visvanathan et al., 1996) แต่ในกรณีพื้นยาง ความชื้นเพิ่มขึ้นค่าสัมประสิทธิ์ความเสียดทานสถิตย์มีค่าลดลง เพราะพื้นยางเป็นวัสดุเหนียว มีค่าสัมประสิทธิ์ความเสียดทานสถิตย์สูง เมื่อเมล็ดข้าวเหนียวดำมีความชื้นเพิ่มขึ้น เมล็ดมีความเป็นทรงกลมมากขึ้นจึงกลิ้งตกลงมาตามแนวพื้นเอียงได้ง่ายค่าสัมประสิทธิ์ความเสียดทานสถิตย์ ณ.ผิวสัมผัสมีค่าลดลง รูปที่ 8 ความสัมพันธ์ระหว่างสัมประสิทธ์ของแรงเสียดทานสถิตกับความชื้น 3.8 ความเร็วสุดท้าย ความเร็วสุดท้ายจะมีค่าลดลงเมื่อความชื้นเพิ่มขึ้น (แปรผกผัน) ดัง รูปที่9 T.V. = -0.0340x + 9.3225 (R² = 0.9825) เนื่องจากความชื้นเพิ่มขึ้นเมล็ดพองตัวขึ้น พื้นที่รับแรงลมมากขึ้น ทำให้เมล็ดลอยง่ายขึ้นความเร็วสุดท้ายจึงน้อยลงซึ่งต่างจากผลการทดลองของlinseed (Selvi et al.,2006) รูปที่ 9 ความสัมพันธ์ระหว่างความเร็วสุดท้ายกับความชื้น 4.สรุปผลการทดลอง จากการทดลองจะเห็นว่า จากการวาดกราฟซึ่งได้จากผลการทดลองสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำพบว่าโดยภาพรวมแล้ว จะมีความเป็นเชิงเส้นหรือเป็นเส้นตรงมาก ทั้งนี้เนื่องจากเมล็ดข้าวเหนียวดำที่มีขนาดที่เป็นมาตรฐาน และเมื่อนำเมล็ดข้าวเหนียวดำไปปรับความชื้นเพื่อทำการทดลอง ผลปรากฏว่าโดยส่วนมากของเมล็ดข้าวเหนียวดำที่นำไปปรับความชื้นลักษณะภายนอกของเมล็ดข้าวเหนียวดำมีการเปลี่ยนแปลงโดยที่เมล็ดข้าวเหนียวดำมีการพองตัวหรือ ขยายตัวเนื่องจากมวลน้ำที่เพิ่มขึ้น ขนาด (Size) และความเป็นทรงกลม (shpericity) ถ้าวัดขนาดของเมล็ดข้าวเหนียวดำที่ความชื้นตั้งแต่9.1%-21.1%สังเกตว่าทั้งขนาดเมล็ด เส้นผ่านศูนย์กลางเฉลี่ย ความเป็นทรงกลม มีค่าเพิ่มขึ้น เมื่อปรับความชื้นเพิ่มขึ้น สำหรับเมล็ดข้าวเหนียวดำ สรุปได้ว่า ขนาด ความยาว ความกว้าง ความหนา เส้นผ่านศูนย์กลางเฉลี่ย และความเป็นทรงกลม แปรผันตรงกับความชื้น ค่าความหนาแน่นรวม (Bulk density) ในการทดลองหาค่าความหนาแน่นรวมที่ความชื้นตั้งแต่9.1%-21.1% ค่าความหนาแน่นรวมจะมีค่าลดลง จึงสรุปว่า สำหรับเมล็ดข้าวเหนียวดำแล้ว ความชื้นจะแปรผกผันกับความหนาแน่นรวม ค่าความหนาแน่นเนื้อ (True density) ในการทดลองหาค่าความหนาแน่นเนื้อที่ความชื้นตั้งแต่9.1%-21.1% ค่าความหนาแน่นเนื้อจะมีค่าลดลง จึงสรุปว่า สำหรับเมล็ดข้าวเหนียวดำแล้ว ความชื้นจะแปรผกผันกับความหนาแน่นเนื้อ ค่าสัมประสิทธิ์ความเสียดทานสถิต (Static coefficientfriction) ของข้าวเหนียวดำ การวัดค่าในการทดลองที่ความชื้นเริ่มต้น โดยให้เมล็ดข้าวเหนียวดำไถลบนพื้นเอียง ที่เป็นพื้นไม้ พื้นยาง พื้นอลูมิเนียม ได้จากการวัดมุมแล้วหาค่าสัมประสิทธิ์ความเสียดทานได้ค่าหนึ่งในทั้ง 3 ชนิดของพื้นเอียง ที่ความชื้นตั้งแต่9.1%-21.1% แล้วหาสัมประสิทธิ์ความเสียดทานตามขั้นตอนเดิมพบว่า ถ้าใช้พื้นไม้และพื้นอลูมิเนียมพบว่า เมื่อปรับความชื้นเพิ่มขึ้น พบว่าค่าสัมประสิทธิ์ความเสียดทานสถิตมีค่าเพิ่มขึ้น แต่ในขณะเดียวกันหากใช้พื้นเอียงที่เป็นพื้นยาง เมื่อปรับความชื้นเพิ่มขึ้น พบว่าค่าสัมประสิทธิ์ความเสียดทานสถิตมีค่าลดลง ดังนั้นในการออกแบบผนังท่อ หรือผนังท่อไซโลถ้ามีการปรับความชื้นเมล็ดข้าวเหนียวดำ ควรใช้พื้นเอียงที่เป็นยาง การศึกษาพื้นที่ภาพฉาย (Projected area) ของข้าวเหนียวดำ ในการศึกษาพื้นที่ภาพฉายของเมล็ดข้าวเหนียวดำที่ความชื้นตั้งแต่9.1%-21.1% เมล็ดข้าวเหนียวดำจะมีขนาดพื้นที่ภาพฉายเพิ่มขึ้น ดังนั้นสำหรับข้าวเหนียวดำพื้นที่ภาพฉายแปรผันตรงกับความชื้น การศึกษาความเร็วสุดท้ายของเมล็ดข้าวเหนียวดำ (Terminal velocity) เมื่อเมล็ดข้าวเหนียวดำที่มีความชื้นตั้งแต่9.1%-21.1% จะส่งผลให้เมล็ดข้าวเหนียวดำมีขนาดใหญ่ขึ้นแต่มวลจะเพิ่มขึ้น น้อยมาก จึงทำให้เมล็ดข้าวเหนียวดำที่มีความชื้นมากใช้แรงลมในการเป่าให้ลอย น้อย กว่า เมล็ดข้าวเหนียวดำที่มีความชื้นน้อย อ้างอิง http://www.pleasehealth.com/index.php?option=com_content&view=article&id=532:-opc-&catid=5:good-health&Itemid=7 http://th.wikipedia.org/wiki/ข้าวเหนียว D.K. Garnayak,R.C. Pradhan,S.N. Naik,N. Bhatnagar Moisture-dependent physical properties of jatropha seed (JatrophacurcasL.) Industrial Crops and Products, (27) (1) (2008) ,pp 123-129 Majdi A. Al-Mahasneh&Taha M. Rababah Effect of moisture content on some physical properties of green wheatFood Eng., (79) (4) 2007,pp1467-1473 Selvi et al., 2006K.C. Selvi, Y. Pinar, E. Yeşiloğlu Some physical properties of linseed Biosyst. Eng., 95 (4) (2006) , pp. 607-612 Visvanathan et al., 1996R. Visvanathan, P.T. Palanisamy, L. Gothandapani, V.V. Sreenarayanan Physical properties of neem nut J. Agric. Eng. Res., 63 (1996) , pp. 19-26
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดถั่วดำ
ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดถั่วดำ (Effect of moisture content on physical properties of black beans) สาขาวิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ชาลิสา จันทร์แก้ว ฐิติชลลดา เหลืองสกุล ลดาวัลย์ พลมั่น วสันต์ อินทร์ตา บทคัดย่อ การศึกษาผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดถั่วดำโดยค่าความยาวเฉลี่ย,ความกว้างเฉลี่ย และความหนาเฉลี่ย คือ 12.21 mm, 8.02 mm และ 5.98mm ตามลำดับ ที่ความชื้นฐานเปียก 4.99 % ในช่วงความชื้นฐานเปียกเพิ่มขึ้นจาก4.99 % ถึง 16.99 % ศึกษาพบว่า มีการเพิ่มขึ้นของมวลเมล็ดถั่วดำ 1000 เมล็ด จาก 240.47 g ถึง 257.73 g, เส้นผ่าศูนย์กลางเฉลี่ย จาก 7.589 mm ถึง 8.361 mm,ความเป็นทรงกลม จาก 0.685 ถึง 0.701 , สัมประสิทธิ์ความเสียดทานสถิตของเมล็ดถั่วดำ เพิ่มขึ้นเป็นเส้นตรง โดยมีวัสดุ 3 ชนิด คือ แผ่นยาง (0.508-0.613) , แผ่นไม้ (0.347-0.394) และ แผ่นสแตนเลส (0.358-0.416) , พื้นที่ภาพฉาย จาก 0.54 cm2 ถึง 0.85 cm2 และความเร็วลมสุดท้าย จาก 10.939 m.s-1 ถึง 11.562 m.s-1 และเมื่อความชื้นฐานเปียกเพิ่มขึ้นจาก 4.99 % ถึง 16.99 % มีการลดลงของความหนาแน่นรวมจาก 81.76 g.ml-1 ถึง 75.33 g.ml-1, และความหนาแน่นเนื้อ จาก 1.523 g.ml-1 ถึง 1.602 g.ml-1 1. บทนำ ถั่วดำ (Vignasinensis) เป็นพืชที่มีองค์ประกอบส่วนใหญ่เป็นแป้งมีโปรตีนสูง ไขมันต่ำ มีคาร์โบไฮเดรตสูง เป็นพืชล้มลุก มีขนสีน้ำตาล ดอกเป็นช่อสีเหลือง ฝักแห้งแตก เปลือกหุ้มเมล็ดเป็นสีดำ มีสารพวกแอนโทไซยานิน จากข้อมูลทางโภชนาการของสารอาหารในถั่วดำพบว่าถั่วดำ 100 g ประกอบไปด้วย โปรตีน 21.60g ,ไขมัน 1.42 g , คาร์โบไฮเดรต 62.36 g ,ใยอาหาร 4.6 g เถ้า 3.8 gและน้ำตาล 2.12g ,อีกทั้งอุดมไปด้วยแร่ธาตุต่างๆ เช่น โฟเลท แมกนีเซียม กรดแอลฟาลิโนริอิด วิตามินบี ใยอาหารเป็นต้น ถั่วดำช่วยลดอัตราเสี่ยงต่อโรคหัวใจ มีรสหวาน บำรุงเลือด ขับของเหลวในร่างกาย ขับลม ขจัดพิษ บำรุงไต ขับเหงื่อ แก้ร้อนใน บำรุงสายตา เหมาะสำหรับผู้ที่มีอาการบวมน้ำ เหน็บชา ดีซ่าน และ ไตเสื่อม ทั้งยังนำมาใช้เป็นใส่ในขนมไทยโดยใส่ทั้งเมล็ด เช่นข้าวต้มมัด ข้าวหลาม ถั่วดำต้มน้ำตาล ขนมถั่วดำ คุณสมบัติทางกายภาพนั้นขึ้นอยู่กับความชื้นของเมล็ดถั่วดำ คุณสมบัติทางกายภาพที่ได้ศึกษา ได้แก่ ขนาด,มวล 100 เมล็ด, ปริมาตรต่อถั่ว 1 เมล็ด,เส้นผ่าศูนย์กลางเฉลี่ย, ความเป็นทรงกลม, ความหนาแน่นรวม, ความหนาแน่นเนื้อ,มุมเอียง, สัมประสิทธิ์ความเสียดทานสถิตย์, พื้นที่ภาพฉาย, ความเร็วสุดท้ายและ สัมประสิทธิ์ความต้านทานเชิงอากาศพลศาสตร์ ดังนั้นการกำหนดคุณสมบัติทางกายภาพของเมล็ด ถั่วดำ จึงเป็นสิ่งจำเป็นสำหรับการออกแบบเครื่องมืออุปกรณ์ การเก็บเกี่ยวการคัดแยก การจัดการ กรรมวิธีการขนส่งลำเลียงการจัดเก็บรักษา และการแปรรูปผลิตภัณฑ์ เพื่อให้สะอาด ปลอดภัย และไม่เกิดความเสียหาย ด้วยเหตุนี้ทางคณะผู้จัดทำจึงได้ทำการวิจัยเพื่อศึกษาผลของความชื้นที่มีผลต่อคุณสมบัติทางกายภาพของเมล็ดถั่วดำ โดยการหาความสัมพันธ์ระหว่างสองตัวแปรนี้ 2. วัสดุและวิธีทดลอง 2.1 การเตรียมวัสดุ คัดเมล็ดถั่วดำที่เปราะ แตกและไม่สมบูรณ์ทิ้งจำนวน 1000 เมล็ด 2.2 ปรับความชื้นถั่วดำ นำถั่วดำมาค่าความชื้นเริ่มต้นชั่งเมล็ดถั่วดำ 3-5กรัม นำเข้าตู้อบที่อุณหภูมิ 105๐ c (ระวังไม่ควรให้นิ้วมีสัมผัสกับเมล็ดเพราะจะทำให้ค่าความชื้นเปลี่ยนแปลงไป) เป็นเวลา 2 ชั่วโมง หลังจากอบเสร็จนำมาชั่งน้ำหนัก แล้วหาความชื้นฐานเปียก (%Wet basis) จาก ระดับความชื้นที่ 2, 3, 4 และ 5 ปรับความชื้นโดยการเพิ่มน้ำให้มีน้ำหนักตามความสัมพันธ์ของสมการ 2.3 ขนาด (Size) ใช้เวอร์เนียคาร์ลิปเปอร์วัดเมล็ดถั่วดำ ทั้ง 3 ด้าน ได้แก่ ด้านความยาว (a) ความกว้าง (b) และ ความหนา (c) เป็นหน่วยมิลลิเมตรความชื้นละ100 เมล็ด แล้วหาค่าเฉลี่ย (average) และส่วนเบี่ยงเบนเฉลี่ยมาตรฐาน (S.D.) ของถั่วดำ 100 เมล็ดทุกความชื้น 2.4 เส้นผ่านศูนย์กลางเชิงเรขาคณิต (GMD) นำข้อมูลที่ได้จากการวัดขนาดถั่วดำในแต่ละระดับความชื้นไปหาค่าเฉลี่ยเพื่อคำนวณหาเส้นผ่านศูนย์กลางเฉลี่ยเชิงเราขาคณิตจากสมการ 2.5 ความเป็นทรงกลม (Sphericity) ค่าที่พิจารณาจะมีความใกล้เคียงกับความเป็นทรงกลมของวัสดุ ซึ่งวัสดุที่เป็นทรงกลมสัมบูรณ์ จะมีค่าความเป็นทรงกลมเท่ากับ 1 ซึ่งสามารถหาค่าความเป็นทรงกลมได้จากสมการ 2.6 มวล 1000 เมล็ด (Mass of fifty seeds) นำเมล็ดถั่วดำ 1000 เมล็ด ในแต่ละระดับความชื้น มาชั่งน้ำหนักด้วยเครื่องชั่งน้ำหนักดิจิตอลความละเอียดอ่านค่าทศนิยม4 ตำแหน่ง ทำการทดลอง3ครั้ง แล้วหาค่าเฉลี่ย 2.7 พื้นที่ภาพฉาย (Projected Area) ถ่ายรูปเมล็ดถั่วดำ 50เมล็ด ทุกๆความชื้นด้วยกล้องโทรศัพท์ IPhone 4sพร้อมสเกลที่ทราบพื้นที่ เพื่อใช้ในการเปรียบเทียบสัดส่วน ใช้โปรแกรม Adobe Photoshop Cs3 วิเคราะห์หาจำนวน pixel ของภาพ แล้วหาพื้นที่ภาพฉายโดยการเทียบสเกลที่ทราบพื้นที่ 2.8 ความหนาแน่นเนื้อ (Solid density) ความหนาแน่นเนื้อของเมล็ดถั่วดำใช้หลักการแทนที่ของเหลว โดยชั่งน้ำหนักเมล็ดถั่วดำ 40เมล็ด จากนั้นเติมเฮกเซนลงในขวดpycnometer ซึ่งมีปริมาตร 50 ml จนเต็ม ใส่เมล็ดถั่วดำจำนวน 40 เมล็ดลงไป ปริมาตรเฮกเซนที่ถูกแทนที่คือปริมาตรของตัวอย่าง จากความสัมพันธ์ดังสมการ 2.9 ความหนาแน่นรวม (Bulk density) คือ อัตราส่วนระหว่างมวลของตัวอย่างกับปริมาตรของภาชนะที่บรรจุ โดยนำเมล็ดถั่วดำใส่ภาชนะที่ทราบปริมาตร ปาดเมล็ดถั่วดำให้ขนานกับถ้วย แล้วนำไปชั่งน้ำหนักหารด้วยปริมาตรได้ความสัมพันธ์ดังสมการ 2.10ความพรุน (porosity) สามารถคำนวณหาจากความสัมพันธ์ดังสมการ 2.11 สัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) หามุมเอียงได้จากการนำแผ่นรองพื้นผิวทั้ง 3 ลักษณะได้แก่ แผ่นอลูมิเนียม แผ่นไม้ และแผ่นยาง มาติดกับเครื่องวัดมุมเอียงแล้วนำเมล็ดถั่วดำทุกระดับความชื้น ความชื้นละ10เมล็ด มาวางที่ตำแหน่งเดียวกัน ครั้งละ1เมล็ด ค่อยๆยกพื้นขึ้นจนเมล็ดถั่วดำไหลลงอย่างอิสระจึงอ่านค่าทำการทดลองซ้ำโดยเปลี่ยนแผ่นรองให้ครบทั้ง 3 ลักษณะ สามารถคำนวณหาจากความสัมพันธ์ดังสมการ 3. ผลการทดลอง และการวิจารณ์ ค่าสูงสุด ต่ำสุด ค่าเฉลี่ยและ SD ของคุณสมบัติทางกายภาพของเมล็ดถั่วดำ 3.1 ขนาดเมล็ด (Size) ปริมาณความชื้นส่งผลต่อขนาดของความยาว ความกว้าง และความหนา ของเมล็ดถั่วดำ โดยเมื่อปริมาณความชื้นเพิ่มขึ้น ความยาว ความกว้าง ความหนา ของเมล็ดถั่วดำมีแนวโน้มเพิ่มขึ้น เนื่องจากถั่วดำเป็นพืชที่มีองค์ประกอบส่วนใหญ่เป็นแป้ง เมื่อแป้งได้รับความชื้นจะทำให้เมล็ดถั่วดำเกิดการขยายตัว จากรูปที่ 1 , 2 , 3 กราฟมีแนวโน้มเพิ่มขึ้น และพบว่าค่า ของควายาวมีค่ามากที่สุดแสดงว่าถั่วดำมีการขยายตัวด้านความยาวมากที่สุดสมการความสัมพันธ์มีดังนี้ : ความยาว y = 0.064x + 6.910 ;R² = 0.986 ความกว้าง y = 0.125x + 9.966 ;R² = 0.975 ความหนา y = 0.035x + 5.171 ;R² = 0.879 รูปที่ 1 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความกว้าง ความยาว และความหนาของเมล็ดถั่วดำ จากการผลทดลองสอดคล้องกับงานวิจัยของYalcm (2006) ซึ่งศึกษาเมล็ดถั่วพุ่ม 3.2 เส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (GMD) จากกราฟพบว่าเมื่อระดับความชื้นฐานเปียก​เพิ่มขึ้นเมล็ดถั่วดำมีการขยายตัว ค่าเส้นผ่าศูนย์กลางเฉลี่ยเ​ชิงเรขาคณิตของเมล็ดถั่วดำจึงมีค่า​เพิ่มขึ้นจาก7.589g ถึง 8.3613g เส้นแนวโน้มเป็นเส้นตรงดังรูปที่ 4 ซึ่งมีสมการความสัมพันธ์ : y = 0.056x + 7.316 ;R² = 0.916 รูปที่ 2 ความสัมพันธ์ ระหว่าง ความชื้นฐานเปียกกับค่าเส้นผ่าศูนย์กลางเฉลี่ยเ​ชิงเรขาคณิตของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของ Coskunetal (2005) , ซึ่งศึกษาเมล็ดข้าวโพด 3.3 ความเป็นทรงกลม (Sphericity) เส้นกราฟมีความชันเพิ่มขึ้น​อธิบายได้ว่าเมื่อเมล็ดถั่ว​ดำได้รับความชื้นเพิ่มขึ้นส่งผลให้เกิดความเป็นทรงกลมมา​กขึ้นสอดคล้องกับด้านความหนาที่เพิ่มขึ้นเช่นกันเมื่อได้รับน้ำจึงเกิดการขย​ายตัวของความหนามากกว่า ความกว้างและความยาวจึงสรุปได้ว่าความชื้นแปรผั​นตรงกับความเป็นทรงกลม ดังรูปที่ 5 ซึ่งมีสมการความสัมพันธ์ y = 0.001x + 0.679 R²=0.962 รูปที่ 3 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความเป็นทร​งกลมของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของ ISIK และ UNAL (2007) ซึ่งศึกษาเมล็ดถั่วแดง 3.4 มวล 1000 เมล็ด (Mass) เมื่อระดับความชื้นเพิ่มขึ้น มวล 1000 เมล็ดจะเพิ่มขึ้นเป็นเส้นตรงจาก 240.47 g ถึง 257.73 g เนื่องจากถั่วดำเป็นพืชที่มีองค์ประกอบส่วนใหญ่เป็นแป้ง เมื่อแป้งได้รับความชื้นจะทำให้เมล็ดถั่วดำเกิดการขยายตัว น้ำหนักของเมล็ดถั่วดำจึงเพิ่มขึ้นตามความชื้นที่เพิ่มขึ้น ดังรูปที่ 6 ซึ่งมีสมการความสัมพันธ์ : y = 1.36x + 234.3 ; ( = 0.996) รูปที่ 4 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและมวลถั่วดำ 100 เมล็ด จากการทดลองสอดคล้องกับงานวิจัยของ ISIK UNAL (2007) ซึ่งศึกษาเมล็ดถั่วแดง 3.5 พื้นที่ภาพฉาย (Projected area of seed) จากกราฟพบว่าเมื่อระดับความ​ชื้นฐานเปียกของถั่วดำเพิ่ม​ขึ้นจะส่งผลให้ขนาดของเมล็ดถั่วดำเกิดการขยายตัวทำให้พื้นที่ภาพฉายเพิ่มขึ้น สรุปได้ว่าความชื้นแปรผันตรงกับพื้นที่ภาพฉายของเมล็ดถั่วดำดังรูปที่ 7 ซึ่งมีสมการความสัมพันธ์ : y = 0.035x + 0.260 ; ( =0.997) รูปที่ 5 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและพื้นที่ภาพฉายของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของRazavietal (2006) ซึ่งศึกษาเมล็ดถั่ว pistachin. 3.6 ความหนาแน่นเนื้อ (Solid density) กราฟแสดงความสัมพันธ์ ระหว่าง ความชื้นฐานเปียกกับค่าความหนาแน่นเนื้อของเ​มล็ดถั่วดำจากกราฟพบว่าเมื่อระดับความ​ชื้นฐานเปียกของถั่วดำเพิ่ม​ขึ้นจะส่งผลให้ขนาดของเมล็ดถั่วดำใหญ่ขึ้น จึงมีปริมาตรเพิ่มขึ้นดังความสัมพันธ์ของสมการ = M/V ทำให้ค่าความหนาแน่นเนื้อลดลง สรุปได้ว่าความชื้นแปรผกผันกับความหนาแน่นเนื้อของเมล็ดถั่ว ดังรูปที่ 8 ซึ่งมีสมการความสัมพันธ์ : y = 0.006x + 1.478 ; =0.945 รูปที่6 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความหนาแน่นเนื้อของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของYalcm (2006) ซึ่งศึกษาเมล็ดถั่วพุ่ม 3.7 ความหนาแน่นรวม (Bulk density ) จากกราฟแสดงความสัมพันธ์ระห​ว่างผลของความชื้นต่อความหน​าแน่นรวมของเมล็ดถั่วดำอธิบายได้ว่าเมื่อถั่วดำได้​รับความชื้นเพิ่มขึ้นจะส่งผลให้ขนาดของเมล็ดถั่ว​ใหญ่ขึ้นสอดคล้องกับผลการทดลองที่ปริมาตรเพิ่มขึ้นดังนั้นจึงมีความหนาแน่นรวมลดลง ความสัมพันธ์ตามสมการ Pb = Mb/V สรุปได้ว่าความชื้นแปรผกผัน​กับความหนาแน่นรวมของเมล็ด ถั่วดำดังรูปที่ 10 ซึ่งมีสมการความสัมพันธ์ : y = -0.000x + 0.754 ; ( =0.897) รูปที่ 7 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความหนาแน่นรวมของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของYalcm (2006) ซึ่งศึกษาเมล็ดถั่วพุ่ม 3.8ความพรุน (porosity) กราฟแสดงความสัมพันธ์ระหว่างความพรุนกับความชื้นฐานเปียก ค่าความพรุนของเมล็ดถั่วดำ จากกราฟมีความชันเพิ่มขึ้นแสดงว่า เมื่อเมล็ดถั่วดำได้รับความชื้นเพิ่มขึ้นส่งผลให้มีความพรุนเพิ่มขึ้น จึงสรุปได้ว่าค่าความชื้นแปรผันตรงกับค่าความพรุน ดังรูปที่11 ซึ่งมีสมการความสัมพันธ์ : y=0.258x+49.34 ; R² = 0.956 รูปที่ 8 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความพรุน 3.9สัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) จากกราฟมีความชันเพิ่มขึ้นอธิบายได้ว่าเมื่อเมล็ดถั่ว​ดำได้รับความชื้นเพิ่มขึ้นจ​ะส่งผลให้เกิดการขยายตัวทำใ​ห้น้ำหนักเพิ่มขึ้นส่งผลให้เมล็ดถั่วไหลลงจากพื้​นเอียงด้วยความเร็วที่เพิ่มขึ้นและมุมเอียงที่เพิ่มขึ้นด้วยเช่นกันจึงสรุปได้ว่าความชื้นแปรผั​นตรงกับสัมประสิทธิ์ความเสี​ยดทานสถิตย์ดังรูปที่11ซึ่งมีสมการความสัมพันธ์ : แผ่นยาง y = 0.008x + 0.450 ; ( =0.870) แผ่นไม้ y = 0.004x + 0.334 ; ( =0.923) แผ่นสแตนเลสy = 0.003x + 0.332 ; ( =0.941) รูปที่ 9 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและสัมประสิทธิ์ ความเสียดทานสถิตของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของYalcm (2006) ซึ่งศึกษาเมล็ดถั่วพุ่ม 3.10ความเร็วสุดท้าย (Terminal valocity) จากกราฟพบว่าเมื่อระดับความชื้นฐานเปียก​เพิ่มขึ้นความเร็วสุดท้ายของเมล็ดถั่​วดำมีค่าเพิ่มขึ้นเนื่องจากความชื้นที่เพิ่มขึ้นทำให้ถั่วดำมีมวลมากความเร็วลมที่ใช้ต้านย่อมมากเช่นกันดังนั้นความเร็วสุดท้ายของเ​มล็ดถั่วดำแปรผันตรงกับความ​ชื้น ดังรูปที่ 12 ซึ่งมีสมการความสัมพันธ์ : y = 0.053x + 10.70 ; ( =0.929) รูปที่10 ความสัมพันธ์ระหว่างความชื้นฐานเปียกและความเร็วสุดท้ายของเมล็ดถั่วดำ จากการทดลองสอดคล้องกับงานวิจัยของ ISIK และ UNAL (2007) ซึ่งศึกษาเมล็ดถั่วแดง 4. สรุปผลการทดลอง จากผลการทดลองจะพบว่า ความยาว ความกว้าง และความหนา ของถั่วดำมีความสัมพันธ์แบบเป็นเชิงเส้น เมื่อค่าความชื้นโดยเฉลี่ยเพิ่มขึ้นซึ่งมวลของเมล็ดถั่วดำ 1000 เมล็ด มีค่าเพิ่มขึ้นจาก 240.47 g ถึง 257.73 g เมื่อค่าความชื้นเพิ่มขึ้น ความเป็นทรงกลม เพิ่มขึ้นจาก จาก 0.6858ถึง 0.7013และเส้นผ่านศูนย์กลางเฉลี่ยของเมล็ดถั่วดำมีแนวโน้มเพิ่มขึ้นจาก จาก 7.589 mm ถึง 8.3613 mm เมื่อค่าความชื้นเพิ่มขึ้นและความหนาแน่นรวมของเมล็ดถั่วดำจะมีค่าลดน้อยลงจาก0.7502 ถึง 0.7426 เนื่องจากเมล็ดถั่วมีการดูดซึมน้ำเข้าไปจึงทำให้มีน้ำหนักเมล็ดเพิ่มขึ้น เมื่อค่าความชื้นเพิ่มขึ้นความหนาแน่นเนื้อของเมล็ดถั่วดำจะมีค่าเพิ่มขึ้นจาก 1.523 ถึง 1.602 เมื่อค่าความชื้นเพิ่มขึ้น ค่าสัมประสิทธิ์ความเสียดทานสถิตของแผ่นสแตนเลส ไม้ ยาง มีค่าเพิ่มขึ้น แผ่นยาง (0.5083 -0.613) , แผ่นไม้ (0.347-0.394) และ แผ่นอลูมิเนียม (0.358-0.416) เมื่อค่าความชื้นเพิ่มขึ้นพื้นที่ภาพฉายของเมล็ดถั่วดำมีค่าเพิ่มขึ้นจาก จาก 0.54 ถึง 0.85 เมื่อค่าความชื้นโดยเฉลี่ยเพิ่มขึ้นความเร็วลมสุดท้าย (m/s) มีค่าเพิ่มขึ้นจาก จาก 10.939 ถึง 11.562 เมื่อค่าความชื้นโดยเฉลี่ยเพิ่มขึ้น จากผลการทดลองข้างต้นจะพบว่าเมล็ดของถั่วดำจะมีความยาว ความกว้าง และความหนา ความเป็นทรงกลม เส้นผ่านศูนย์กลางเฉลี่ยของเมล็ดความหนาแน่นรวมของเมล็ดความหนาแน่นเนื้อของเมล็ดค่าสัมประสิทธิ์ความเสียดทานสถิตของแผ่นสแตนเลส ไม้ ยาง พื้นที่ภาพฉายของเมล็ดความเร็วลมสุดท้ายความพรุน ค่าต่างๆที่ความชื้นต่างและผลของความชื้นต่อข้อมูลต่างๆ จะสามารถนำไปใช้ประโยชน์ในงานอุตสาหกรรมต่างๆได้ เช่น ใช้ในการออกแบบผลิตภัณฑ์ บรรจุภัณฑ์ และการขนส่งเป็นต้น อ้างอิง EbubekirAltuntas, Mehmet Yildiz (2005) . Effect of moisture content on some physical and mechanical properties of faba bean. Journal of Food Engineering,174-183. Esref ISIK, Halil UNAL (2007) . Moisture - dependent physical properties of white speckled red kidney bean grains. Journal of Food Engineering,209-216. Ibrahim Yalcin, (2006) . Physical properties of cowpea seeds. Journal of Food Engineering,57-62. M.BulentCoskun, Ibrahim Yalcin, CengizOzarslan (2005) . Physical properties of sweet corn seeds. Journal of FoodEngineering,523-528. SeyedM.A.Razavi,B. Emadzadeh,A.Rafe,A. Mohammad Amini (2006) . Physical properties of pistachin nut and its kernel as a function of moisture content and variety : Part I. Geometrical properties. Journal of Food Engineering,209-217. Choung, M.G., Baek, I.Y., Kang, S.T., Han, W.Y., Shin, D.C., Moon, H.P., Kang,K.H., 2001. Isolation and determination of anthocyanins in seed coats of blacksoybean (Glycine max (L.) Merr.) .J. Agric. Food Chem. 49, 5848-5851. IYalcım . (2007) . Physical properties of cowpea seed (Vignasinensis L.) . Journal of Food Engineering. Pages (1405-1409) I. Yalc,ın , C. O zarslan, T. Akbas. (2007) . Physical properties of pea (Pisumsativum) seed.Journal of Food Engineering. Pages (731 - 735) Mustafa Cetin. (2007) . Physical properties of barbunia bean (Phaseolus vulgaris L. cv. 'Barbunia') seed. Journal of Food Engineering. Pages (353 - 358) E. Dursun; I. Dursun. (2007) . Some Physical Properties of Caper Seed.Journal of Food Engineering. Pages (1426 - 1431) R.C. Pradhana, S.N. Naika,, N. Bhatnagarb, V.K. Vijaya . (2009) . industrial crops and products29 Pages (341-347) OnderKabas, Aziz Ozmerzi, Ibrahim Akinci. (2005) . Physical properties of cactus pear (Opuntiaficusindia L.) grown wild in Turkey. Journal of Food Engineering .Pages (1405-1409) http://www.nectec.or.th/schoolnet/library/webcontest2003/100team/dlss020/A2/A2-17.html http://atcloud.com/stories/21247
สมัครสมาชิก

สนับสนุนโดย / Supported By

  • บริษ้ท มาเรล ฟู้ดส์ ซิสเท็ม จำกัด จัดจำหน่ายเครื่องจักรและอุปกรณ์การแปรรูปอาหาร เช่น ระบบการชั่งน้ำหนัก, การคัดขนาด, การแบ่ง, การตรวจสอบกระดูก และการประยุกต์ใช้ร่วมกับโปรแกรมคอมพิวเตอร์ พร้อมกับบริการ ออกแบบ ติดตั้ง กรรมวิธีการแปรรูปทั้งกระบวนการ สำหรับ ผลิตภัณฑ์ ปลา เนื้อ และ สัตว์ปีก โดยมีวิศวกรบริการและ สำนักงานตั้งอยู่ที่กรุงเทพ มาเรล เป็นผู้ให้บริการชั้นนำระดับโลกของอุปกรณ์การแปรรูปอาหารที่ทันสมัย​​ครบวงจรทั้งระบบ สำหรับอุตสาหกรรม ปลา กุ้ง เนื้อ และสัตว์ปีก ต่างๆ เครื่องแปรรูปผลิตภัณฑ์สัตว์ปีก Stork และ Townsend จาก Marel อยู่ในกลุ่มเครื่องที่เป็นที่ยอมรับมากที่สุดในอุตสาหกรรม พร้อมกันนี้ สามารถบริการครบวงจรตั้งแต่ต้นสายการผลิตจนเสร็จเป็นสินค้า เพื่ออำนวยความสะดวกให้กับทุกความต้องการของลูกค้า ด้วยสำนักงานและบริษัทสาขามากกว่า 30 ประเทศ และ 100 เครือข่ายตัวแทนและผู้จัดจำหน่ายทั่วโลก ที่พร้อมทำงานเคียงข้างลูกค้าเพื่อขยายขอบเขตผลการแปรรูปอาหาร Marel Food Systems Limited. We are supply weighing, grading, portioning, bone detection and software applications as well as complete turn-key processing solutions for fish, meat and poultry. We have service engineer and office in Bangkok. Marel is the leading global provider of advanced food processing equipment, systems and services to the fish, meat, and poultry industries. Our brands - Marel, Stork Poultry Processing and Townsend Further Processing - are among the most respected in the industry. Together, we offer the convenience of a single source to meet our customers' every need. With offices and subsidiaries in over 30 countries and a global network of 100 agents and distributors, we work side-by-side with our customers to extend the boundaries of food processing performance.
  • วิสัยทัศน์ของบริษัท คือ การอยู่ในระดับแนวหน้า "ฟอร์ฟร้อนท์" ของเทคโนโลยีประเภทต่างๆ และนำเทคโนโลยีนั้นๆ มาปรับใช้ให้เหมาะสมกับอุตสาหกรรมและกระบวนการผลิตในประเทศไทย เพื่อผลประโยชน์สูงสุดของลูกค้า บริษัท ฟอร์ฟร้อนท์ ฟู้ดเทค จำกัด เชื่อมั่นและยึดมั่นในอุดมการณ์การดำเนินธุรกิจ กล่าวคือ จำหน่าย สินค้าและให้บริการที่มีคุณภาพสูง ซึ่งเหมาะสมกับความต้องการของลูกค้า ด้วยความซื่อสัตย์และความตรงต่อเวลา เพื่อการทำธุรกิจที่ประสบความสำเร็จร่วมกันระยะยาว Our vision is to be in the "forefront" of technology in its field and suitably apply the technology to industries and production in Thailand for customers' utmost benefits. Forefront Foodtech Co., Ltd. strongly believes in and is committed to our own business philosophy which is to supply high quality products and service appropriately to each customer's requirements with honesty and punctuality in order to maintain long term win-win business relationship. Forefront Foodtech Co., Ltd. is the agent company that supplies machinery and system, install and provide after sales service as well as spare parts. Our products are: Nock, made in Germany: manufacturer of skinning machines, membrane skinning machine, slicers and scale ice makers. Frey, made in Germany: manufacturer of vacuum stuffers and chain linking system. Kronen, made in Germany: manufacturer of washing, centrifuges and cutting machinery for vegetable and fruits. Bandall, made in Netherlands: manufacturer of banding machine. Emerson, made in Romania: smoke chamber. G.Mondini, made in Italy: manufacturer of top seal, skin pack, paper seal, slimfresh and slicefresh for ready meal, meat, petfood and etc. Dorit, made in Germany: manufacturer of tumblers and injectors. Cliptechnik, made in Germany: manufacturer of single and double clippers for table top use and standalone clipping machines. Firex, made in Italy: manufacturer of food-processing equipment for kitchen and commercial equipment. Orved, made in Italy: manufacturer of vacuum packing machine. Carsoe, made in Denmark: designs and produces products for the seafood and food processing industry Gernal, made in Belgium: manufacturer of food-processing equipment for industrial Mado, made in Germany: manufacturer of meat-processing industry
  • We are well known for reliable, easy-to-use coding and marking solutions which have a low total cost of ownership, as well as for our strong customer service ethos. Developing new products and a continuous programme of improving existing coding and marking solutions also remain central to Linx's strategy. Coding and marking machines from Linx Printing Technologies Ltd provide a comprehensive solution for date and batch coding of products and packaging across manufacturing industries via a global network of distributors. In the industrial inkjet printer arena, our reputation is second to none. Our continuous ink jet printers, laser coders, outer case coders and thermal transfer overprinters are used on production lines in many manufacturing sectors, including the food, beverage, pharmaceutical, cosmetics, automotive and electronic industries, where product identification codes, batch numbers, use by dates and barcodes are needed. PTasia, THAILAND With more than 3,700 coding, marking, barcode, label applicator, filling, packing and sealing systems installed in THAILAND market. Our range is includes systems across a wide range of technologies. To select the most appropriate technology to suit our customers. An excellent customer service reputation, together with a reputation for reliability that sets standards in the industry, rounds off the PTAsia offering and provides customers with efficient and economical solutions of the high quality. Satisfyingcustomers inTHAILAND for 10 years Our 1,313 customers benefit from our many years of experience in the field, with our successful business model of continuous improvement. Our technical and service associates specialise in providing individual advice and finding the most efficient and practical solution to every requirment. PTAsia extends its expertise to customers in the food, beverage, chemical, personal care, pharmaceutical, medical device, electronics, aerospace, military, automotive, and other industrial markets.