ผลของความชื้นต่อคุณสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำ
(Effect of moisture content on some physical properties of Black Glutinous rice seeds)
ภาควิชาวิศวกรรมอาหาร คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
กันต์รักเรืองเดช, จตุพรจันทสุรวงศ์, อภิณัฐสีตลกาญจน์, วสันต์ อินทร์ตา
บทคัดย่อ
การศึกษาสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำ (Black Glutinous rice seeds) พิจารณาจากความชื้นฐานแห้งที่เมล็ดข้าวเหนียวดำได้รับในช่วง 9.1%-21.1% ทั้งหมด5 ระดับพบว่า [ค่าขนาด (Size) ความยาว (L) ความหนา (M) ความกว้าง (T) ] มีค่าอยู่ในช่วง8.66mm-6.58mm,3.24mm-2.54mm,2.21mm-1.58mmค่าเส้นผ่านศูนย์กลางเฉลี่ยเรขาคณิต (Geometric Mean Diameter, GMD) มีค่าอยู่ในช่วง3.77mm-3.14mmค่าความเป็นทรงกลม (Sphericity) มีค่าอยู่ในช่วง 51.48%-39.10% ค่าน้ำหนัก1000 เมล็ดมีค่าอยู่ในช่วง 29.28g-29.50 g และค่าปริมาตรต่อเมล็ดมีค่าอยู่ในช่วง 20.659mm3-22.312 mm3 จะพบว่าเทื่อความชื้นเพิ่มขึ้นกราฟมีแนวโน้มเพิ่มขึ้นแบบเชิงเส้น ในทางกลับกันค่าความหนาแน่นจริง (True density) มีค่าอยู่ในช่วง 1.4392g/ml-1.3981 g/ml จะพบว่าเมื่อค่าความชื้นเพิ่มขึ้นกราฟมีแนวโน้มจะลดลงแบบเชิงเส้น เมื่อนำเมล็ดข้าวเหนียวถั่วดำที่ความชื้นต่างกันมาหาค่ามุมตั้งต้น (Angle of repose) และ สัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction ) กับพื้นที่ผิวต่างกันคือ ไม้ อะลูมิเนียม และ ยาง จะพบว่าเมื่อระดับความชื้นเพิ่มมากขึ้นกราฟของพื้น ไม้ และ อลูมิเนียมมีแนวโน้มเพิ่มขึ้นแบบเชิงเส้น ในขณะทีพื้น ยาง ลดลงแบบเชิงเส้น
1.บทนำ
ข้าวเหนียวดำ (Black Glutinous rice) ชื่อวิทยศาสตร์ Oryza sativa var. glutinosa เป็นข้าวที่มีลักษณะเด่นคือการติดกันเหมือนกาวของเมล็ดข้าวที่สุกแล้ว ปลุกมากทางภาคอีสานของประเทศไทยและ ประเทศลาว ข้าวเหนียวดำจะมีสารอาหาร คือ "โอพีซี" (OPC) มีสรรพคุณช่วยชะลอการแก่ก่อนวัย และความเสื่อม ถอยของร่างกาย โดยสารโอพีซีที่พบในข้าวเหนียวดำ เป็นสารชนิดเดียวกับสารสกัดที่ได้ จากองุ่นดำองุ่นแดง เปลือกสน โอพีซี หรือ OligomericProanthocyanidin Complexes (OPCs) เป็นสารที่พบในเมล็ด ดอกและเปลือก ของผักผลไม้เปลือกแข็ง เป็นหนึ่งในสารตระกูลฟลาโวนอยด์ ถูกค้นพบโดย ศาสตราจารย์ ดอกเตอร์ แจ๊ค มาสเควอริเย (Dr. Jack Masquelier) ชาวฝรั่งเศส เป็นผู้ค้นคว้าและคิดค้นการสกัดสาร OPC ให้มีความบริสุทธิ์โดยปราศจากสารปลอมปนพวกแทนนิน (สารรสฝาด ที่มีโมเลกุลใหญ่กว่า OPC)
อันที่จริง บทบาทเดิมของ OPC คือ เป็นสารต้านอนุมูลอิสระที่เคลื่อนที่ได้คล่องแคล่ว มีอนุภาพสูงกว่าวิตามินซี 20 เท่า และสูงกว่าวิตามินอีกว่า 50 เท่า จึงได้รับขนานนามว่า Super antioxidant นอกจากนี้เมื่อทาน OPC ร่วมกับวิตามินซี จะช่วยเสริมฤทธิ์ให้วิตามินซีที่ถูกใช้ให้คืนสภาพกลับมาใช้ใหม่ได้ บางคนจึงเรียก OPC ว่าเป็น Vitamin C cofactor อีกทั้งยังสามารถละลายได้ทั้งในน้ำและในน้ำมัน จึงสามารถแทรกซึมไปได้ทุกส่วนของเซลล์ร่างกาย แม้กระทั่งเซลล์สมอง เพราะสามารถผ่านเยื่อหุ้มหลอดเลือดสมองไปยังเนื้อสมองได้ (Blood Brain Barrier) จึงน่าจะสามารถเป็นอาหารเสริมที่ดูแลร่างกายแบบองค์รวมที่ดีตัวหนึ่ง
สมบัติทางกายภาพของเมล็ดข้าวเหนียวดำต่อผลของความชื้น ได้แก่ ขนาดของเมล็ด (Size) เส้นผ่านศูนย์กลางเฉลี่ย (Geometric Mean Diameter) ค่าความเป็นทรงกลม (Sphericity) ปริมาตร (Volume) มวล 1000เมล็ด (Mass) ความหนาแน่นจริง (True density) ความหนาแน่นรวม (Bulk density) ความพรุน (Porosity) และ สัมประสิทธิ์ความเสียดทานสถิต (Static coefficient of friction) การศึกษาสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำนี้มีความสำคัญ ต่อการออกแบบเครื่องจักร และกระบวนการผลิตแปรรูป เช่นการคัดแยก การทำความสะอาด จนถึงการเก็บรักษา
ตัวแปรต่างๆในการทดลอง
L ด้านที่มีเส้นผ่านศูนย์กลางยาวที่สุด (mm)
W เส้นผ่านศูนย์กลางยาวที่สุดที่ตั้งฉากกับ L (mm)
T ด้านเส้นผ่านศูนย์กลางยาวที่สุดที่ตั้งฉากกับ W และ L (mm)
GMD ค่าเส้นผ่านศูนย์กลางเฉลี่ยเชิงเรขาคณิต (mm)
Sp ค่าความเป็นทรงกลม
Pr ค่าความพรุน (%)
%Mcw.b. ค่าเปอร์เซ็นต์ความชื้นฐานเปียก (%Wb)
MwMi ปริมาณน้ำที่ระดับความชื้นเริ่มต้น (g)
Mb น้ำหนักเมล็ด (น้ำหนักรวม-น้ำหนักภาชนะ) (g)
M น้ำหนักเฮกเซน (g)
Ms น้ำหนักรวมของเมล็ด (g)
µ สัมประสิทธิ์ความเสียดทานสถิต
ρb ความหนาแน่นรวม (g/ml)
ρs ความหนาแน่นเนื้อ (g/ml)
ρ ความหนาแน่นเฮกเซน (g/ml)
V ปริมาตรต่อหนึ่งเมล็ด (ml)
Vb ปริมาตรภาชนะ (ml)
Mi ค่าความชื้นเริ่มต้น (%Wb)
Mf ค่าความชื้นที่ต้องการ
Wi น้ำหนักถั่ว 1,000 เมล็ด (g)
Proj พื้นที่ภาพฉาย (cm2)
θ ค่ามุม (องศา
2.วัตถุดิบและวิธีการทดลอง 2.1 การเตรียมวัตถุดิบ
เมล็ดข้าวเหนียวดำที่ใช้ในการทดลองผลิตโดยบริษัทไร่ทิพย์บรรจุในถุงผนึกอย่างดีจะถูกนำมาคัดแยกเมล็ดที่ไม่สมบูรณ์ออก เพื่อให้ได้เฉพาะเมล็ดที่สมบูรณ์สำหรับใช้ในการทดลอง
2.2 หาความชื้นเริ่มต้น
เมล็ดข้าวเหนียวดำจะถูกนำมาหาค่าความชื้นเริ่มต้นด้วยการนำเมล็ดตัวอย่างจำนวนหนึ่งมาแบ่งใส่ไว้ในถ้วยฟอยล์ 3 ถ้วย ทำการบันทึกค่าน้ำหนักของแต่ละถ้วย จากนั้นจึงนำเข้าอบในเตาอบที่อุณหภูมิ 105 เป็นระยะเวลา 120 นาที จึงนำเมล็ดตัวอย่างออกมาชั่งน้ำหนักเพื่อทราบค่ามวลของน้ำ และนำตัวอย่างเข้าไปอบในเตาอบที่อุณหภูมิ เดิมอีกรอบ เป็นเวลา 30 นาที และนำเมล็ดตัวอย่างออกมาชั่งน้ำหนักอีกครั้งเพื่อหาค่าน้ำหนักคงที่ของน้ำ และนำค่าที่ได้มาทำการคำนวณหาค่าความชื้นทั้ง ฐานแห้ง ตามสมการดังนี้
2.3 การปรับความชื้น
เมื่อคำนวณหาค่าเปอร์เซ็นต์ความชื้นเริ่มต้นแล้วนำเมล็ดตัวอย่างชุดละ1000เมล็ดปรับค่าเปอร์เซ็นต์ความชื้น โดยแบ่งเป็น 4 ระดับโดยจะเพิ่มความชื้นครั้งละ3%คำนวณหาระดับปริมาณน้ำที่ต้องเติมเพื่อให้ได้ค่าเปอร์เซ็นต์ความชื้นที่ต้องการเติมน้ำลงในถุงเก็บความชื้นพร้อมตัวอย่างในแต่ละชุดการทดลองจากนั้นปิดปากถุงโดยใช้ vacuum sealจากนั้นจึงนำถุงเมล็ดตัวอย่างทั้ง 4 ถุงไปแช่ในตู้แช่ปรับความเย็นที่อุณหภูมิ 5 เป็นเวลา 1 สัปดาห์ โดยในระยะเวลาดังกล่าวถุงเมล็ดตัวอย่างจะถูกเขย่าทุกๆ 2 วันเพื่อกระจายความชื้นให้ทั่วถึง มวลน้ำที่เพิ่มเข้าไป
2.4 คุณสมบัติทางกายภาพ
2.4.1ขนาด (Size)
เมล็ดข้าวเหนียวดำจำนวน 100 เมล็ดจะถูกนำมาวัดค่า ความยาว ความกว้างและความหนา ด้วย เวอร์เนียร์คาลิปเปอร์
2.4.2 ศูนย์กลางเฉลี่ยเชิงเรขาคณิต (Geometric mean Diameter, GMD)
คำนวณหาขนาดเส้นผ่านศูนย์กลางเฉลี่ยเรขาคณิตโดยการนำค่า L, M, T ที่หาได้จากการวัดขนาดของเมล็ดข้าวเหนียวดำจำนวน 100 เมล็ดมาคำนวณจากสมการ
2.4.3 ความเป็นทรงกลม
ความเป็นทรงกลมสามารถคำนวณได้จากสมการ
2.5 พื้นที่ภาพฉาย
เตรียมเมล็ดข้าวเหนียวดำที่ความชื้นที่ต้องการนำเมล็ดข้าวที่เตรียมมาเรียงบนกระดาษที่ตัดกับสีของเมล็ดถข้าวเหนียวดำ จำนวนความชื้นละ 50 เมล็ด ถ่ายรูปเมล็ดถข้าวที่เรียงแล้วโดยตั้งกล้องให้ตักฉากกับพื้นผิว นำไปลงในโปรแกรม PhotoShopเพื่อ Cropภาพหา Pixelของภาพ 1x1จากนั้น Cropภาพเมล็ดแต่ละเมล็ดหา Pixelนำมาคำนวณหาพื้นที่ของเมล็ดถั่วขาวจากสูตร
2.6 ความหนาแน่นจริง (True density,ƿs)
การหาความหนาแน่นจริงของเมล็ดข้าวเหนียวดำโดยใช้หลักการแทนที่ของของเหลวโดยใช้ขวด Pyrometer และของเหลวที่ใช้คือ Hexane โดยhexane มีแรงตึงผิวต่ำไม่ซึมเข้าในเมล็ดระหว่างการทดลองหาความหนาแน่นของHexane โดยการบรรจุ Hexane ในขวด pyrometer ที่ทราบปริมาตรแน่นอนจนเต็มแล้วชั่งน้ำหนักจากนั้นนำเมล็ดข้าวเหนียวดำมาใส่ในขวดแล้วนำไปชั่งน้ำหนักอีกครั้งจะสามารถหาค่าปริมาตรได้จากสมการ
แล้วนำค่าปริมาตรที่ได้มาหาค่าความหนาแน่นจริงได้จากสมการ
2.7 ความหนาแน่นรวม (Bulk density, ƿb)
ความหนาแน่นรวมคืออัตราส่วนระหว่างมวลกับปริมาตร หาได้จากการนำเมล็ดข้าวเหนียวดำมาใส่ภาชนะที่ทราบปริมาตรจรเต็มพอดี จากนั้นปาดส่วนที่เกินออกให้เสมอภาชนะแล้วนำไปชั่งน้ำหนักด้วยเครื่องชั่งดิจิตอล โดยทำการทดลอง ซ้ำ 3 ครั้ง ความหนาแน่นรวมหาได้จากสมการ
2.8 ความพรุน (porosity)
ความพรุนคือค่าที่แสดงปริมาณช่องว่างที่มีอยู่ในเมล็ดข้าวเหนียวดำสามารถหาได้จากสมการ
2.9 การวัดพื้นที่เอียง
วัดพื้นที่เอียงโดยเตรียมเมล็ดข้าวเหนียวดำที่ความชื้นที่ต้องการคัดเลือกเมล็ดข้าวเหนียวดำจำนวน 10 เมล็ด นำเมล็ดข้าวเหนียวดำทีคัดเลือกไว้ไปทดสอบพื้นที่เอียง 3 แบบ คือ แผ่นไม้ แผ่นยาง และแผ่นอลูมิเนียม
2.10 ความเร็วสุดท้าย
วัดความเร็วสุดท้ายโดยเตรียมเมล็ดข้าวเหนียวดำที่ความชื้นที่ต้องการนำเมล็ดข้าวเหนียวดำที่เตรียมไว้ใส่ในเครื่องปรับความเร็วรอบของมอเตอร์พอให้ถั่วลอยนำเครื่องวัดความเร็วลมวัดค่าความเร็วลมที่เมล็ดถั่วลอย
รูปที่ 1 Terminal velocity measurement by Anemometer
ตารางที่ 1 แสดงคุณสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำที่ความชื้นเริ่มต้น
3.ผลที่ได้และวิจารณ์ผลการทดลอง
จากการศึกษาเปรียบเทียบคุณสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำที่ความชื้นแตกต่างกัน 5 ระดับ
3.1 ขนาด
ขนาดของเมล็ดข้าวเหนียวดำ ด้าน L,M,T จะมี ค่ามากขึ้นเมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) ดัง รูปที่2
L = 0.0032Mc + 7.5792 (R² = 0.6042)
M= 0.0046Mc+ 2.8104 (R² = 0.7494)
T= 0.0180Mc + 1.6023 (R² = 0.9928)
เนื่องจากแป้งในเมล็ดข้าวเหนียวดำดูดน้ำเข้าไปทำให้เมล็ดพองตัวขึ้นซึ่งตรงกับผลการทดลองของjatropha seed (D.K. Garnayak et al.,2008)
รูปที่ 2 ความสัมพันธ์ระหว่าง ขนาด กับ ความชื้น
3.2 ตวามเป็นทรงกลม
ความเป็นทรงกลมของเมล็ดข้าวเหนียวดำจะเพิ่มขึ้นเมื่อระดับความชื้นเพิ่มขึ้น (แปรผันตรง) ดัง รูปที่3
Sp= 0.152Mc+ 42.975 (R² = 0.9741)
เนืองจากความเป็นทรงกลมจะมีความสัมพันธ์กับขนาด ความกว้าง ความยาว ความหนา ของเมล็ดข้าวเหนียวดำตามสมการการหาความเป็นทรงกลมซึ่งมีความชันของกราฟมากกว่าผลการทดลองของ green wheat (Majdi A. Al-Mahasneh&Taha M. Rababah, 2007)
รูปที่ 3 ความสัมพันธ์ระหว่างความเป็นทรงกลมกับความชื้น
3.3 พื้นที่ภาพฉาย
พื้นที่ภาพฉายจะมีค่ามากขึ้นเมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) ดัง รูปที่4
A= 0.0025Mc + 0.1603 (R² = 0.9793)
เนื่องจากแป้งในเมล็ดข้าวเหนียวดำดูดน้ำเข้าไปทำให้เมล็ดพองตัวขึ้นซึ่งความชันของกราฟน้อยกว่าผลการทดลองของlinseed (Selvi et al.,2006)
รูปที่ 4 ความสัมพันธ์ระหว่างพื้นที่ภาพฉายกับความชื้น
3.4 ความหนาแน่นจริง
ความหนาแน่นจริงของเมล็ดข้าวเหนียวดำจะลดลงเมื่อความชื้นเพิ่มขึ้น (แปรผกผัน) ดัง รูปที่5
Ƿs = -0.0023Mc + 1.4505 (R² = 0.9997)
เนื่องจากความชื้นที่เพิ่มขึ้นเมล็ดเกิดการพองตัว ทำให้มีปริมาตรเพิ่มขึ้น แต่มวลเพิ่มขึ้นเล็กน้อยเนื่องจากข้าวเหนียวดำมี อะไมโลสและอะไมโลแพคตินซึ่งเป็นสารกึ่งผลึก ทำให้ดูดซึมน้ำเข้าไปได้น้อยมากที่อุณหภูมิห้องทำให้มีปริมาตรเพิ่มขึ้น แต่มวลเพิ่มขึ้นเล็กน้อยซึ่งมีความชันของกราฟมากกว่าผลการทดลองของgreen wheat (Majdi A. Al-Mahasneh&Taha M. Rababah, 2007)
รูปที่ 5 ความสัมพันธ์ระหว่างความหนาแน่นจริงกับความชื้น
3.5 ความหนาแน่นรวม
ความหนาแน่นรวมจะมีค่าลดลงเมื่อความชื้นเพิ่มขึ้น (แปรผกผัน) ดัง รูปที่6
Ƿb= -0.0053Mc + 0.8806 (R² = 0.9845)
เพราะเมล็ดที่พองตัวขึ้น ทำให้มีปริมาตรเพิ่มขึ้น แต่มวลเพิ่มขึ้นเล็กน้อยซึ่งมีความชันของกราฟมากกว่าผลการทดลองของgreen wheat (Majdi A. Al-Mahasneh&Taha M. Rababah,2007)
รูปที่ 6 ความสัมพันธ์ระหว่างความหนาแน่นรวมกับความชื้น
3.6 ความพรุน
ความพรุนจะมีค่าเพิ่มขึ้นเมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) ดัง รูปที่7
ɛ = 0.2846Mc + 39.1916 (R² = 0.9721)
เนื่องจากเมล็ดพองตัวขึ้น ช่องว่างของรูพรุนก็ขยายตัวขึ้นซึ่งมีความชันของกราฟมากกว่าผลการทดลองของjatropha seed (D.K. Garnayak et al.,2008)
รูปที่ 7ความสัมพันธ์ระหว่างความพรุนกับความชื้น
3.7 ระหว่างสัมประสิทธ์ของแรงเสียดทานสถิต
สัมประสิทธ์ความเสียดทานสถิตต่อพื้นไม้และพื้น อะลูมิเนียม มีค่าเพิ่มขึ้น เมื่อความชื้นเพิ่มขึ้น (แปรผันตรง) ส่วนค่าสัมประสิทธ์ความเสียดทานสถิตต่อพื้นยางจะมีค่าลดลงเมื่อปริมาณควาชื้นเพิ่มขึ้น (แปรผกผัน) ดัง รูปที่8
Rubber: µ= -0.0148x + 0.865 (R² = 0.9651)
Wood: µ= 0.0086x + 0.4368 (R² = 0.9985)
Aluminum: µ= 0.0040x + 0.4703 (R² = 0.9517)
เนื่องจากความชื้นที่เพิ่มขึ้นทำให้เกิดฟิล์มความชื้นที่ผิวสัมผัสระหว่างเมล็ดและตัวพื้นจึงมีแรงเสียดทานมากขึ้นค่าสัมประสิทธิ์ความเสียดทานสถิตย์จึงเพิ่มสูงขึ้น ซึ่งผลที่ได้ตรงกับneem nuts (Visvanathan et al., 1996) แต่ในกรณีพื้นยาง ความชื้นเพิ่มขึ้นค่าสัมประสิทธิ์ความเสียดทานสถิตย์มีค่าลดลง เพราะพื้นยางเป็นวัสดุเหนียว มีค่าสัมประสิทธิ์ความเสียดทานสถิตย์สูง เมื่อเมล็ดข้าวเหนียวดำมีความชื้นเพิ่มขึ้น เมล็ดมีความเป็นทรงกลมมากขึ้นจึงกลิ้งตกลงมาตามแนวพื้นเอียงได้ง่ายค่าสัมประสิทธิ์ความเสียดทานสถิตย์ ณ.ผิวสัมผัสมีค่าลดลง
รูปที่ 8 ความสัมพันธ์ระหว่างสัมประสิทธ์ของแรงเสียดทานสถิตกับความชื้น
3.8 ความเร็วสุดท้าย
ความเร็วสุดท้ายจะมีค่าลดลงเมื่อความชื้นเพิ่มขึ้น (แปรผกผัน) ดัง รูปที่9
T.V. = -0.0340x + 9.3225 (R² = 0.9825)
เนื่องจากความชื้นเพิ่มขึ้นเมล็ดพองตัวขึ้น พื้นที่รับแรงลมมากขึ้น ทำให้เมล็ดลอยง่ายขึ้นความเร็วสุดท้ายจึงน้อยลงซึ่งต่างจากผลการทดลองของlinseed (Selvi et al.,2006)
รูปที่ 9 ความสัมพันธ์ระหว่างความเร็วสุดท้ายกับความชื้น
4.สรุปผลการทดลอง
จากการทดลองจะเห็นว่า จากการวาดกราฟซึ่งได้จากผลการทดลองสมบัติทางกายภาพของเมล็ดข้าวเหนียวดำพบว่าโดยภาพรวมแล้ว จะมีความเป็นเชิงเส้นหรือเป็นเส้นตรงมาก ทั้งนี้เนื่องจากเมล็ดข้าวเหนียวดำที่มีขนาดที่เป็นมาตรฐาน และเมื่อนำเมล็ดข้าวเหนียวดำไปปรับความชื้นเพื่อทำการทดลอง ผลปรากฏว่าโดยส่วนมากของเมล็ดข้าวเหนียวดำที่นำไปปรับความชื้นลักษณะภายนอกของเมล็ดข้าวเหนียวดำมีการเปลี่ยนแปลงโดยที่เมล็ดข้าวเหนียวดำมีการพองตัวหรือ ขยายตัวเนื่องจากมวลน้ำที่เพิ่มขึ้น ขนาด (Size) และความเป็นทรงกลม (shpericity)
ถ้าวัดขนาดของเมล็ดข้าวเหนียวดำที่ความชื้นตั้งแต่9.1%-21.1%สังเกตว่าทั้งขนาดเมล็ด เส้นผ่านศูนย์กลางเฉลี่ย ความเป็นทรงกลม มีค่าเพิ่มขึ้น เมื่อปรับความชื้นเพิ่มขึ้น สำหรับเมล็ดข้าวเหนียวดำ สรุปได้ว่า ขนาด ความยาว ความกว้าง ความหนา เส้นผ่านศูนย์กลางเฉลี่ย และความเป็นทรงกลม แปรผันตรงกับความชื้น
ค่าความหนาแน่นรวม (Bulk density)
ในการทดลองหาค่าความหนาแน่นรวมที่ความชื้นตั้งแต่9.1%-21.1% ค่าความหนาแน่นรวมจะมีค่าลดลง จึงสรุปว่า สำหรับเมล็ดข้าวเหนียวดำแล้ว ความชื้นจะแปรผกผันกับความหนาแน่นรวม
ค่าความหนาแน่นเนื้อ (True density)
ในการทดลองหาค่าความหนาแน่นเนื้อที่ความชื้นตั้งแต่9.1%-21.1% ค่าความหนาแน่นเนื้อจะมีค่าลดลง จึงสรุปว่า สำหรับเมล็ดข้าวเหนียวดำแล้ว ความชื้นจะแปรผกผันกับความหนาแน่นเนื้อ
ค่าสัมประสิทธิ์ความเสียดทานสถิต (Static coefficientfriction) ของข้าวเหนียวดำ
การวัดค่าในการทดลองที่ความชื้นเริ่มต้น โดยให้เมล็ดข้าวเหนียวดำไถลบนพื้นเอียง ที่เป็นพื้นไม้ พื้นยาง พื้นอลูมิเนียม ได้จากการวัดมุมแล้วหาค่าสัมประสิทธิ์ความเสียดทานได้ค่าหนึ่งในทั้ง 3 ชนิดของพื้นเอียง ที่ความชื้นตั้งแต่9.1%-21.1% แล้วหาสัมประสิทธิ์ความเสียดทานตามขั้นตอนเดิมพบว่า ถ้าใช้พื้นไม้และพื้นอลูมิเนียมพบว่า เมื่อปรับความชื้นเพิ่มขึ้น พบว่าค่าสัมประสิทธิ์ความเสียดทานสถิตมีค่าเพิ่มขึ้น แต่ในขณะเดียวกันหากใช้พื้นเอียงที่เป็นพื้นยาง เมื่อปรับความชื้นเพิ่มขึ้น พบว่าค่าสัมประสิทธิ์ความเสียดทานสถิตมีค่าลดลง ดังนั้นในการออกแบบผนังท่อ หรือผนังท่อไซโลถ้ามีการปรับความชื้นเมล็ดข้าวเหนียวดำ ควรใช้พื้นเอียงที่เป็นยาง
การศึกษาพื้นที่ภาพฉาย (Projected area) ของข้าวเหนียวดำ
ในการศึกษาพื้นที่ภาพฉายของเมล็ดข้าวเหนียวดำที่ความชื้นตั้งแต่9.1%-21.1% เมล็ดข้าวเหนียวดำจะมีขนาดพื้นที่ภาพฉายเพิ่มขึ้น ดังนั้นสำหรับข้าวเหนียวดำพื้นที่ภาพฉายแปรผันตรงกับความชื้น
การศึกษาความเร็วสุดท้ายของเมล็ดข้าวเหนียวดำ (Terminal velocity)
เมื่อเมล็ดข้าวเหนียวดำที่มีความชื้นตั้งแต่9.1%-21.1% จะส่งผลให้เมล็ดข้าวเหนียวดำมีขนาดใหญ่ขึ้นแต่มวลจะเพิ่มขึ้น น้อยมาก จึงทำให้เมล็ดข้าวเหนียวดำที่มีความชื้นมากใช้แรงลมในการเป่าให้ลอย น้อย กว่า เมล็ดข้าวเหนียวดำที่มีความชื้นน้อย
อ้างอิง
http://th.wikipedia.org/wiki/ข้าวเหนียว
D.K. Garnayak,R.C. Pradhan,S.N. Naik,N. Bhatnagar
Moisture-dependent physical properties of jatropha seed (JatrophacurcasL.)Industrial Crops and Products, (27) (1) (2008) ,pp 123-129
Majdi A. Al-Mahasneh&Taha M. Rababah
Effect of moisture content on some physical properties of green wheatFood Eng., (79) (4) 2007,pp1467-1473Selvi et al., 2006K.C. Selvi, Y. Pinar, E. Yeşiloğlu
Some physical properties of linseed
Biosyst. Eng., 95 (4) (2006) , pp. 607-612
Visvanathan et al., 1996R. Visvanathan, P.T. Palanisamy, L. Gothandapani, V.V. Sreenarayanan
Physical properties of neem nut
J. Agric. Eng. Res., 63 (1996) , pp. 19-26